Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-18 DOI:10.1186/s12911-025-02926-8
Kyung-Sik Ahn, Ji Hye Choi, Heejou Kwon, Seoyeon Lee, Yongwon Cho, Woo Young Jang
{"title":"Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis.","authors":"Kyung-Sik Ahn, Ji Hye Choi, Heejou Kwon, Seoyeon Lee, Yongwon Cho, Woo Young Jang","doi":"10.1186/s12911-025-02926-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aimed to propose a deep-learning neural network model for automatically detecting five landmarks during a two-dimensional (2D) ultrasonography (US) scan to develop a standard plane for developmental dysplasia of the hip (DDH) screening.</p><p><strong>Method: </strong>A model of global and local networks was developed to detect five landmarks for DDH screening during 2D US. Patients (N = 532) who underwent hip US for DDH screening from January 2016 to December 2021 at a tertiary medical center were enrolled. All datasets were randomly split into training, validation, and test sets in a 70:10:20 ratio for the final assessment of landmark detection. The performance of this model for detecting five landmarks for guiding DDH was analyzed using the root mean square error (RMSE) and dice similarity coefficient.</p><p><strong>Results: </strong>The RMSE value for the five landmarks for diagnosing and classifying DDH using global and local networks was 4.023 ± 3.723. The point results using EfficientNetB2 were 1.69 ± 1.26 (first point), 3.34 ± 2.37 (second point), 2.54 ± 1.61 (third point), 5.92 ± 4.25 (fourth point), and 6.61 ± 4.82 (fifth point).</p><p><strong>Conclusions: </strong>Our deep-learning network model is feasible for detecting five landmarks for DDH using ultrasound images. The primary parameters to determine DDH will be significantly detected by applying the deep-learning model in clinical settings.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"91"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02926-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We aimed to propose a deep-learning neural network model for automatically detecting five landmarks during a two-dimensional (2D) ultrasonography (US) scan to develop a standard plane for developmental dysplasia of the hip (DDH) screening.

Method: A model of global and local networks was developed to detect five landmarks for DDH screening during 2D US. Patients (N = 532) who underwent hip US for DDH screening from January 2016 to December 2021 at a tertiary medical center were enrolled. All datasets were randomly split into training, validation, and test sets in a 70:10:20 ratio for the final assessment of landmark detection. The performance of this model for detecting five landmarks for guiding DDH was analyzed using the root mean square error (RMSE) and dice similarity coefficient.

Results: The RMSE value for the five landmarks for diagnosing and classifying DDH using global and local networks was 4.023 ± 3.723. The point results using EfficientNetB2 were 1.69 ± 1.26 (first point), 3.34 ± 2.37 (second point), 2.54 ± 1.61 (third point), 5.92 ± 4.25 (fourth point), and 6.61 ± 4.82 (fifth point).

Conclusions: Our deep-learning network model is feasible for detecting five landmarks for DDH using ultrasound images. The primary parameters to determine DDH will be significantly detected by applying the deep-learning model in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'. Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis. Diabetic peripheral neuropathy detection of type 2 diabetes using machine learning from TCM features: a cross-sectional study. How good is your synthetic data? SynthRO, a dashboard to evaluate and benchmark synthetic tabular data. Uncovering the potential of smartphones for behavior monitoring during migraine follow-up.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1