How good is your synthetic data? SynthRO, a dashboard to evaluate and benchmark synthetic tabular data.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-18 DOI:10.1186/s12911-024-02731-9
Gabriele Santangelo, Giovanna Nicora, Riccardo Bellazzi, Arianna Dagliati
{"title":"How good is your synthetic data? SynthRO, a dashboard to evaluate and benchmark synthetic tabular data.","authors":"Gabriele Santangelo, Giovanna Nicora, Riccardo Bellazzi, Arianna Dagliati","doi":"10.1186/s12911-024-02731-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The exponential growth in patient data collection by healthcare providers, governments, and private industries is yielding large and diverse datasets that offer new insights into critical medical questions. Leveraging extensive computational resources, Machine Learning and Artificial Intelligence are increasingly utilized to address health-related issues, such as predicting outcomes from Electronic Health Records and detecting patterns in multi-omics data. Despite the proliferation of medical devices based on Artificial Intelligence, data accessibility for research is limited due to privacy concerns. Efforts to de-identify data have met challenges in maintaining effectiveness, particularly with large datasets. As an alternative, synthetic data, that replicate main statistical properties of real patient data, are proposed. However, the lack of standardized evaluation metrics complicates the selection of appropriate synthetic data generation methods. Effective evaluation of synthetic data must consider resemblance, utility and privacy, tailored to specific applications. Despite available metrics, benchmarking efforts remain limited, necessitating further research in this area.</p><p><strong>Results: </strong>We present SynthRO (Synthetic data Rank and Order), a user-friendly tool for benchmarking health synthetic tabular data across various contexts. SynthRO offers accessible quality evaluation metrics and automated benchmarking, helping users determine the most suitable synthetic data models for specific use cases by prioritizing metrics and providing consistent quantitative scores. Our dashboard is divided into three main sections: (1) Loading Data section, where users can locally upload real and synthetic datasets; (2) Evaluation section, in which several quality assessments are performed by computing different metrics and measures; (3) Benchmarking section, where users can globally compare synthetic datasets based on quality evaluation.</p><p><strong>Conclusions: </strong>Synthetic data mitigate concerns about privacy and data accessibility, yet lacks standardized evaluation metrics. SynthRO provides an accessible dashboard helping users select suitable synthetic data models, and it also supports various use cases in healthcare, enhancing prognostic scores and enabling federated learning. SynthRO's accessible GUI and modular structure facilitate effective data evaluation, promoting reliability and fairness. Future developments will include temporal data evaluation, further broadening its applicability.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"89"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02731-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The exponential growth in patient data collection by healthcare providers, governments, and private industries is yielding large and diverse datasets that offer new insights into critical medical questions. Leveraging extensive computational resources, Machine Learning and Artificial Intelligence are increasingly utilized to address health-related issues, such as predicting outcomes from Electronic Health Records and detecting patterns in multi-omics data. Despite the proliferation of medical devices based on Artificial Intelligence, data accessibility for research is limited due to privacy concerns. Efforts to de-identify data have met challenges in maintaining effectiveness, particularly with large datasets. As an alternative, synthetic data, that replicate main statistical properties of real patient data, are proposed. However, the lack of standardized evaluation metrics complicates the selection of appropriate synthetic data generation methods. Effective evaluation of synthetic data must consider resemblance, utility and privacy, tailored to specific applications. Despite available metrics, benchmarking efforts remain limited, necessitating further research in this area.

Results: We present SynthRO (Synthetic data Rank and Order), a user-friendly tool for benchmarking health synthetic tabular data across various contexts. SynthRO offers accessible quality evaluation metrics and automated benchmarking, helping users determine the most suitable synthetic data models for specific use cases by prioritizing metrics and providing consistent quantitative scores. Our dashboard is divided into three main sections: (1) Loading Data section, where users can locally upload real and synthetic datasets; (2) Evaluation section, in which several quality assessments are performed by computing different metrics and measures; (3) Benchmarking section, where users can globally compare synthetic datasets based on quality evaluation.

Conclusions: Synthetic data mitigate concerns about privacy and data accessibility, yet lacks standardized evaluation metrics. SynthRO provides an accessible dashboard helping users select suitable synthetic data models, and it also supports various use cases in healthcare, enhancing prognostic scores and enabling federated learning. SynthRO's accessible GUI and modular structure facilitate effective data evaluation, promoting reliability and fairness. Future developments will include temporal data evaluation, further broadening its applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'. Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis. Diabetic peripheral neuropathy detection of type 2 diabetes using machine learning from TCM features: a cross-sectional study. How good is your synthetic data? SynthRO, a dashboard to evaluate and benchmark synthetic tabular data. Uncovering the potential of smartphones for behavior monitoring during migraine follow-up.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1