{"title":"Identification of Key Genes in Esketamine's Therapeutic Effects on Perioperative Neurocognitive Disorders via Transcriptome Sequencing.","authors":"Wen Hu, Jieqiong Luo, Hui Li, Yushan Luo, Xiaoyuan Zhang, Zhen Wu, Qian Yang, Sirun Zhao, Bailong Hu, Xiaohua Zou","doi":"10.2147/DDDT.S510752","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Esketamine ameliorates propofol-induced brain damage and cognitive impairment in mice. However, the precise role and underlying mechanism of esketamine in perioperative neurocognitive disorders (PND) remain unclear. Therefore, this study aimed to investigate the key genes associated with the role of esketamine in PND through animal modeling and transcriptome sequencing.</p><p><strong>Methods: </strong>The present study established a mice model of PND and administered esketamine intervention to the model, and mice were divided into control, surgical group, and surgical group with esketamine. Behavioral assessments were conducted using the Morris water maze and Y maze paradigms, while transcriptome sequencing was performed on hippocampal samples obtained from 3 groups. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on sequencing data to identify candidate genes related to esketamine treating PND. Thereafter, protein-protein interaction (PPI) network analysis was implemented to select key genes. The genes obtained from each step were subjected to enrichment analysis, and a regulatory network for key genes was constructed.</p><p><strong>Results: </strong>The Morris water maze and Y maze findings demonstrated the successful construction of our PND model, and indicated that esketamine exhibits a certain therapeutic efficacy for PND. Ank1, Cbln4, L1cam, Gap43, and Shh were designated as key genes for subsequent analysis. The 5 key genes were significantly enriched in cholesterol biosynthesis, nonsense mediated decay (NMD), formation of a pool of free 40s subunits, major pathway of rRNA processing in the nucleolus and cytosol, among others. Notably, the miRNAs, mmu-mir-155-5p and mmu-mir-1a-3p, functionally co-regulated the expression of Ank1, Gap43, and L1cam.</p><p><strong>Conclusion: </strong>We uncovered the therapeutic efficacy of esketamine in treating PND and identified 5 key genes (Ank1, Cbln4, L1cam, Gap43, and Shh) that contribute to its therapeutic effects, providing a valuable reference for further mechanistic studies on esketamine's treatment of PND.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"981-1000"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S510752","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Esketamine ameliorates propofol-induced brain damage and cognitive impairment in mice. However, the precise role and underlying mechanism of esketamine in perioperative neurocognitive disorders (PND) remain unclear. Therefore, this study aimed to investigate the key genes associated with the role of esketamine in PND through animal modeling and transcriptome sequencing.
Methods: The present study established a mice model of PND and administered esketamine intervention to the model, and mice were divided into control, surgical group, and surgical group with esketamine. Behavioral assessments were conducted using the Morris water maze and Y maze paradigms, while transcriptome sequencing was performed on hippocampal samples obtained from 3 groups. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on sequencing data to identify candidate genes related to esketamine treating PND. Thereafter, protein-protein interaction (PPI) network analysis was implemented to select key genes. The genes obtained from each step were subjected to enrichment analysis, and a regulatory network for key genes was constructed.
Results: The Morris water maze and Y maze findings demonstrated the successful construction of our PND model, and indicated that esketamine exhibits a certain therapeutic efficacy for PND. Ank1, Cbln4, L1cam, Gap43, and Shh were designated as key genes for subsequent analysis. The 5 key genes were significantly enriched in cholesterol biosynthesis, nonsense mediated decay (NMD), formation of a pool of free 40s subunits, major pathway of rRNA processing in the nucleolus and cytosol, among others. Notably, the miRNAs, mmu-mir-155-5p and mmu-mir-1a-3p, functionally co-regulated the expression of Ank1, Gap43, and L1cam.
Conclusion: We uncovered the therapeutic efficacy of esketamine in treating PND and identified 5 key genes (Ank1, Cbln4, L1cam, Gap43, and Shh) that contribute to its therapeutic effects, providing a valuable reference for further mechanistic studies on esketamine's treatment of PND.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.