Michele Monti, Jonathan Fiorentino, Dimitrios Miltiadis-Vrachnos, Giorgio Bini, Tiziana Cotrufo, Natalia Sanchez de Groot, Alexandros Armaos, Gian Gaetano Tartaglia
{"title":"catGRANULE 2.0: accurate predictions of liquid-liquid phase separating proteins at single amino acid resolution","authors":"Michele Monti, Jonathan Fiorentino, Dimitrios Miltiadis-Vrachnos, Giorgio Bini, Tiziana Cotrufo, Natalia Sanchez de Groot, Alexandros Armaos, Gian Gaetano Tartaglia","doi":"10.1186/s13059-025-03497-7","DOIUrl":null,"url":null,"abstract":"Liquid-liquid phase separation (LLPS) enables the formation of membraneless organelles, essential for cellular organization and implicated in diseases. We introduce catGRANULE 2.0 ROBOT, an algorithm integrating physicochemical properties and AlphaFold-derived structural features to predict LLPS at single-amino-acid resolution. The method achieves high performance and reliably evaluates mutation effects on LLPS propensity, providing detailed predictions of how specific mutations enhance or inhibit phase separation. Supported by experimental validations, including microscopy data, it predicts LLPS across diverse organisms and cellular compartments, offering valuable insights into LLPS mechanisms and mutational impacts. The tool is freely available at https://tools.tartaglialab.com/catgranule2 and https://doi.org/10.5281/zenodo.14205831 .","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"9 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03497-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid-liquid phase separation (LLPS) enables the formation of membraneless organelles, essential for cellular organization and implicated in diseases. We introduce catGRANULE 2.0 ROBOT, an algorithm integrating physicochemical properties and AlphaFold-derived structural features to predict LLPS at single-amino-acid resolution. The method achieves high performance and reliably evaluates mutation effects on LLPS propensity, providing detailed predictions of how specific mutations enhance or inhibit phase separation. Supported by experimental validations, including microscopy data, it predicts LLPS across diverse organisms and cellular compartments, offering valuable insights into LLPS mechanisms and mutational impacts. The tool is freely available at https://tools.tartaglialab.com/catgranule2 and https://doi.org/10.5281/zenodo.14205831 .
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.