Pol Vendrell-Mir, Basile Leduque, Leandro Quadrana
{"title":"Ultra-sensitive detection of transposon insertions across multiple families by transposable element display sequencing","authors":"Pol Vendrell-Mir, Basile Leduque, Leandro Quadrana","doi":"10.1186/s13059-025-03512-x","DOIUrl":null,"url":null,"abstract":"Mobilization of transposable elements (TEs) can generate large effect mutations. However, due to the difficulty of detecting new TE insertions in genomes and the typically rare occurrence of transposition, the actual rate, distribution, and population dynamics of new insertions remain largely unexplored. We present a TE display sequencing approach that leverages target amplification of TE extremities to detect non-reference TE insertions with high specificity and sensitivity, enabling the detection of insertions at frequencies as low as 1 in 250,000 within a DNA sample. Moreover, this method allows the simultaneous detection of insertions for distinct TE families, including both retrotransposons and DNA transposons, enhancing its versatility and cost-effectiveness for investigating complex “mobilomes.” When combined with nanopore sequencing, this approach enables the identification of insertions using long-read information and achieves a turnaround time from DNA extraction to insertion identification of less than 24 h, significantly reducing the time-to-answer. By analyzing a population of Arabidopsis thaliana plants undergoing a transposition burst, we demonstrate the power of the multiplex TE display sequencing to analyze “evolve and resequence” experiments. Notably, we find that 3–4% of de novo TE insertions exhibit recurrent allele frequency changes indicative of either positive or negative selection. TE display sequencing is an ultra-sensitive, specific, simple, and cost-effective approach for investigating the rate and landscape of new TE insertions across multiple families in large-scale population experiments. We provide a step-by-step experimental protocol and ready-to-use bioinformatic pipelines to facilitate its straightforward implementation.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"15 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03512-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mobilization of transposable elements (TEs) can generate large effect mutations. However, due to the difficulty of detecting new TE insertions in genomes and the typically rare occurrence of transposition, the actual rate, distribution, and population dynamics of new insertions remain largely unexplored. We present a TE display sequencing approach that leverages target amplification of TE extremities to detect non-reference TE insertions with high specificity and sensitivity, enabling the detection of insertions at frequencies as low as 1 in 250,000 within a DNA sample. Moreover, this method allows the simultaneous detection of insertions for distinct TE families, including both retrotransposons and DNA transposons, enhancing its versatility and cost-effectiveness for investigating complex “mobilomes.” When combined with nanopore sequencing, this approach enables the identification of insertions using long-read information and achieves a turnaround time from DNA extraction to insertion identification of less than 24 h, significantly reducing the time-to-answer. By analyzing a population of Arabidopsis thaliana plants undergoing a transposition burst, we demonstrate the power of the multiplex TE display sequencing to analyze “evolve and resequence” experiments. Notably, we find that 3–4% of de novo TE insertions exhibit recurrent allele frequency changes indicative of either positive or negative selection. TE display sequencing is an ultra-sensitive, specific, simple, and cost-effective approach for investigating the rate and landscape of new TE insertions across multiple families in large-scale population experiments. We provide a step-by-step experimental protocol and ready-to-use bioinformatic pipelines to facilitate its straightforward implementation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.