Chen-Yang Li, Yong-Jia Hong, Bo Li, Xiao-Fei Zhang
{"title":"Benchmarking single-cell cross-omics imputation methods for surface protein expression","authors":"Chen-Yang Li, Yong-Jia Hong, Bo Li, Xiao-Fei Zhang","doi":"10.1186/s13059-025-03514-9","DOIUrl":null,"url":null,"abstract":"Recent advances in single-cell multimodal omics sequencing have facilitated the simultaneous profiling of transcriptomes and surface proteomes within individual cells, offering insights into cellular functions and heterogeneity. However, the high costs and technical complexity of protocols like CITE-seq and REAP-seq constrain large-scale dataset generation. To overcome this limitation, surface protein data imputation methods have emerged to predict protein abundances from scRNA-seq data. We present a comprehensive benchmark of twelve state-of-the-art imputation methods across eleven datasets and six scenarios. Our analysis evaluates the methods’ accuracy, sensitivity to training data size, robustness across experiments, and usability in terms of running time, memory usage, popularity, and user-friendliness. With benchmark experiments in diverse scenarios and a comprehensive evaluation framework of the results, our study offers valuable insights into the performance and applicability of surface protein data imputation methods in single-cell omics research. Based on our results, Seurat v4 (PCA) and Seurat v3 (PCA) demonstrate exceptional performance, offering promising avenues for further research in single-cell omics.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"29 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03514-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in single-cell multimodal omics sequencing have facilitated the simultaneous profiling of transcriptomes and surface proteomes within individual cells, offering insights into cellular functions and heterogeneity. However, the high costs and technical complexity of protocols like CITE-seq and REAP-seq constrain large-scale dataset generation. To overcome this limitation, surface protein data imputation methods have emerged to predict protein abundances from scRNA-seq data. We present a comprehensive benchmark of twelve state-of-the-art imputation methods across eleven datasets and six scenarios. Our analysis evaluates the methods’ accuracy, sensitivity to training data size, robustness across experiments, and usability in terms of running time, memory usage, popularity, and user-friendliness. With benchmark experiments in diverse scenarios and a comprehensive evaluation framework of the results, our study offers valuable insights into the performance and applicability of surface protein data imputation methods in single-cell omics research. Based on our results, Seurat v4 (PCA) and Seurat v3 (PCA) demonstrate exceptional performance, offering promising avenues for further research in single-cell omics.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.