{"title":"Production of Immobilized Arginine Deiminase Using the Self-Assembling Peptide ELK16 for Efficient l-Citrulline Synthesis","authors":"Yunfan Gao, Qilong Yao, Xueyuan Weng, Heng Zhang, Junzhong Liu, Qingcai Jiao","doi":"10.1021/acs.jafc.4c08347","DOIUrl":null,"url":null,"abstract":"Self-assembling peptide (SAP) tags induce protein self-assembly, forming insoluble protein aggregates. Traditional <span>l</span>-citrulline production using arginine deiminase (ADI) is limited by enzyme instability and low reusability. SAP tags were fused with ADI to overcome these challenges, and ADI-ELK16 demonstrated optimal activity at 55 °C and pH 6.0 with enhanced thermal stability. ADI-ELK16 retained 57.34% of its enzyme activity after 10 cycles, with notable reusability. The protein was characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and the zeta potential. Additionally, the conversion of 100 g/L <span>l</span>-arginine to 92.3 g/L <span>l</span>-citrulline over batch reactions validated the industrial potential of ADI-ELK16. Compared with traditional immobilization methods, this approach eliminates the need for carrier materials, simplifying the immobilization process and significantly enhancing the catalytic performance and stability, making ADI-ELK16 a highly efficient and reusable system for industrial applications.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"13 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08347","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembling peptide (SAP) tags induce protein self-assembly, forming insoluble protein aggregates. Traditional l-citrulline production using arginine deiminase (ADI) is limited by enzyme instability and low reusability. SAP tags were fused with ADI to overcome these challenges, and ADI-ELK16 demonstrated optimal activity at 55 °C and pH 6.0 with enhanced thermal stability. ADI-ELK16 retained 57.34% of its enzyme activity after 10 cycles, with notable reusability. The protein was characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and the zeta potential. Additionally, the conversion of 100 g/L l-arginine to 92.3 g/L l-citrulline over batch reactions validated the industrial potential of ADI-ELK16. Compared with traditional immobilization methods, this approach eliminates the need for carrier materials, simplifying the immobilization process and significantly enhancing the catalytic performance and stability, making ADI-ELK16 a highly efficient and reusable system for industrial applications.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.