Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2025-02-17 DOI:10.1016/j.phymed.2025.156529
Liang Kong , Yang Liu , Jia-hua Wang , Mei-jun Lv , Ya-zhu Wang , Wan-ping Sun , Hui-min Cao , Rui-bo Guo , Lu Zhang , Yang Yu , Juan Zang , Lian-qun Jia , Xue-tao Li
{"title":"Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2","authors":"Liang Kong ,&nbsp;Yang Liu ,&nbsp;Jia-hua Wang ,&nbsp;Mei-jun Lv ,&nbsp;Ya-zhu Wang ,&nbsp;Wan-ping Sun ,&nbsp;Hui-min Cao ,&nbsp;Rui-bo Guo ,&nbsp;Lu Zhang ,&nbsp;Yang Yu ,&nbsp;Juan Zang ,&nbsp;Lian-qun Jia ,&nbsp;Xue-tao Li","doi":"10.1016/j.phymed.2025.156529","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Doxorubicin (DOX), a widely used anthracycline chemotherapy agent, is effective against various malignant tumors. However, its clinical application is significantly limited due to dose-dependent cardiotoxicity. Linggui Zhugan Decoction (LGZGD), a traditional Chinese medicine formulation, has demonstrated notable cardioprotective effects. However, its potential to mitigate DOX-induced cardiotoxicity (DIC) remains unexplored.</div></div><div><h3>Objective</h3><div>This study investigated the protective effects of LGZGD against DIC and explores its ability to enhance mitochondrial function by modulating the AMPK-FOXO3a pathway via targeting BTG2.</div></div><div><h3>Methods</h3><div>A zebrafish DIC model was established to evaluate the cardioprotective effects of LGZGD on embryos and adults. Further investigations included <em>in vitro</em> studies with H9c2 cells and <em>in vivo</em> experiments using mouse models to assess LGZGD's pharmacological actions and their impact on mitochondrial function. Network pharmacology and transcriptomic analyses were performed to predict the potential mechanism of LGZGD in regulating the AMPK-FOXO3a pathway via BTG2. Verification was conducted through molecular docking, molecular dynamics (MD) simulations, and immunofluorescence co-localization.</div></div><div><h3>Results</h3><div>LGZGD enhanced survival rates and alleviated heart tissue damage in zebrafish. <em>In vitro</em>, LGZGD reduced DOX-induced reactive oxygen species (ROS) production in H9c2 cells, decreased apoptosis, improved mitochondrial membrane potential, and preserved mitochondrial function. <em>In vivo</em>, LGZGD improved cardiac function and prevented myocardial structural damage in mice. Additionally, it mitigated oxidative stress, inflammation, and apoptosis while reversing DOX-induced mitochondrial structural damage. Network pharmacology and transcriptomic analyses suggested that LGZGD regulates the BTG2 gene and AMPK-FOXO3a pathway activity. Molecular docking, MDs, and immunofluorescence co-localization supported the hypothesis that LGZGD modulates the AMPK-FOXO3a pathway by targeting BTG2.</div></div><div><h3>Conclusion</h3><div>LGZGD exerts significant cardioprotective effects against DIC by reducing oxidative stress, inflammation, and apoptosis preserving while mitochondrial structure and function. These findings offer a novel insight into LGZGD's clinical relevance in DIC management. Targeting BTG2 to regulate the AMPK-FOXO3a pathway highlights LGZGD as a promising therapeutic strategy for preventing and treating DIC.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"139 ","pages":"Article 156529"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325001709","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Doxorubicin (DOX), a widely used anthracycline chemotherapy agent, is effective against various malignant tumors. However, its clinical application is significantly limited due to dose-dependent cardiotoxicity. Linggui Zhugan Decoction (LGZGD), a traditional Chinese medicine formulation, has demonstrated notable cardioprotective effects. However, its potential to mitigate DOX-induced cardiotoxicity (DIC) remains unexplored.

Objective

This study investigated the protective effects of LGZGD against DIC and explores its ability to enhance mitochondrial function by modulating the AMPK-FOXO3a pathway via targeting BTG2.

Methods

A zebrafish DIC model was established to evaluate the cardioprotective effects of LGZGD on embryos and adults. Further investigations included in vitro studies with H9c2 cells and in vivo experiments using mouse models to assess LGZGD's pharmacological actions and their impact on mitochondrial function. Network pharmacology and transcriptomic analyses were performed to predict the potential mechanism of LGZGD in regulating the AMPK-FOXO3a pathway via BTG2. Verification was conducted through molecular docking, molecular dynamics (MD) simulations, and immunofluorescence co-localization.

Results

LGZGD enhanced survival rates and alleviated heart tissue damage in zebrafish. In vitro, LGZGD reduced DOX-induced reactive oxygen species (ROS) production in H9c2 cells, decreased apoptosis, improved mitochondrial membrane potential, and preserved mitochondrial function. In vivo, LGZGD improved cardiac function and prevented myocardial structural damage in mice. Additionally, it mitigated oxidative stress, inflammation, and apoptosis while reversing DOX-induced mitochondrial structural damage. Network pharmacology and transcriptomic analyses suggested that LGZGD regulates the BTG2 gene and AMPK-FOXO3a pathway activity. Molecular docking, MDs, and immunofluorescence co-localization supported the hypothesis that LGZGD modulates the AMPK-FOXO3a pathway by targeting BTG2.

Conclusion

LGZGD exerts significant cardioprotective effects against DIC by reducing oxidative stress, inflammation, and apoptosis preserving while mitochondrial structure and function. These findings offer a novel insight into LGZGD's clinical relevance in DIC management. Targeting BTG2 to regulate the AMPK-FOXO3a pathway highlights LGZGD as a promising therapeutic strategy for preventing and treating DIC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy Effect of Qishen Yiqi dripping pills on the classification of ejection fraction in patients with ischaemic heart failure: A prospective cohort study Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2 (+)-Borneol enhances the protective effect of edaravone against cerebral ischemia/reperfusion injury by targeting OAT3/P-gp transporters for drug delivery into the brain Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1