Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2025-02-22 DOI:10.1016/j.phymed.2025.156500
Yue Cheng , Wei Gu , Xuechao Wu , Wei Tian , Zhenqian Mu , Yangfan Ye , Honglu Chao , Zhongyuan Bao
{"title":"Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy","authors":"Yue Cheng ,&nbsp;Wei Gu ,&nbsp;Xuechao Wu ,&nbsp;Wei Tian ,&nbsp;Zhenqian Mu ,&nbsp;Yangfan Ye ,&nbsp;Honglu Chao ,&nbsp;Zhongyuan Bao","doi":"10.1016/j.phymed.2025.156500","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Traumatic brain injury (TBI) leads to neuroinflammation, which is a key contributor to the negative prognosis in TBI patients. Recent evidence indicates that allicin can prevent neuronal injury after TBI. However, whether allicin alleviates neuroinflammation by promoting mitophagy is unclear.</div></div><div><h3>Purpose</h3><div>We investigated the suppressive effects of allicin on neuroinflammation and clarified the role of mitophagy in the underlying mechanism.</div></div><div><h3>Study design/methods</h3><div>The controlled cortical impact (CCI) was employed to effectively mimic TBI in a living system. Cellular mechanical damage was modeled in vitro using a Bv2 cell stretch model. Neuroinflammation was assessed by evaluating levels of TNF-α, IL-1β, IL-6, ROS, IL-4 and IL-10, along with the expression of NLRP3 and TLR4 proteins. RNA-sequence and KEGG analyses revealed allicin-regulated molecular processes in the Bv2 cell stretch model. Immunofluorescence staining was performed to label both the autophagy marker protein LC3 and the outer mitochondrial membrane (OMM) marker COX IV. Lipid MS and lipidomic analyses were used to determine the CL levels in the OMM and IMM. The characteristic bilayer structure of mitochondria was observed using transmission electron microscopy (TEM). PKC-δ expression and phosphorylated phospholipid scramblase-3 (PLS3) levels were detected via western blotting. Stretched Bv2 cells and primary neurons were cocultured to assess the anti-neuroinflammatory effects of allicin. Neuro-rehabilitation was assessed using behavioral experiments such as the rotarod and morris water maze (MWM) tests.</div></div><div><h3>Results</h3><div>Allicin treatment reduced TNF-α, IL-1β, IL-6, ROS levels, and the expression of NLRP3 and TLR4 proteins in mice with CCI, while IL-4 and IL-10 levels remained unchanged. Additionally, allicin reduced tissue lesions and cell death after CCI. The transcriptomic analysis revealed that mitophagy was important in allicin-related molecular pathways. The translocation of CL from IMM to OMM was facilitated by allicin, as demonstrated by flow cytometry and lipidomic analyses. Importantly, allicin increased PKC-δ expression and PLS3 phosphorylation in the CL-related mitophagy process in both the CCI and Bv2 cell stretch models. These findings suggest that allicin reduces mitophagy-related neuroinflammation and further prevents neuronal injury in vitro. Rottlerin, a selective PKC-δ inhibitor, effectively diminished allicin's capacity to reduce neuroinflammation, correlating with worsened motor function and cognitive abilities. Thus, CCI-induced behavioral deficits were also ameliorated by the administration of allicin via a PKC-δ-related mitophagy.</div></div><div><h3>Conclusions</h3><div>This study uncovers a novel mechanism where allicin enhances PKC-δ expression and PLS3 phosphorylation, facilitating CL translocation to the OMM and activating mitophagy, thereby reducing TBI-induced neuroinflammation.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"139 ","pages":"Article 156500"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325001412","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Traumatic brain injury (TBI) leads to neuroinflammation, which is a key contributor to the negative prognosis in TBI patients. Recent evidence indicates that allicin can prevent neuronal injury after TBI. However, whether allicin alleviates neuroinflammation by promoting mitophagy is unclear.

Purpose

We investigated the suppressive effects of allicin on neuroinflammation and clarified the role of mitophagy in the underlying mechanism.

Study design/methods

The controlled cortical impact (CCI) was employed to effectively mimic TBI in a living system. Cellular mechanical damage was modeled in vitro using a Bv2 cell stretch model. Neuroinflammation was assessed by evaluating levels of TNF-α, IL-1β, IL-6, ROS, IL-4 and IL-10, along with the expression of NLRP3 and TLR4 proteins. RNA-sequence and KEGG analyses revealed allicin-regulated molecular processes in the Bv2 cell stretch model. Immunofluorescence staining was performed to label both the autophagy marker protein LC3 and the outer mitochondrial membrane (OMM) marker COX IV. Lipid MS and lipidomic analyses were used to determine the CL levels in the OMM and IMM. The characteristic bilayer structure of mitochondria was observed using transmission electron microscopy (TEM). PKC-δ expression and phosphorylated phospholipid scramblase-3 (PLS3) levels were detected via western blotting. Stretched Bv2 cells and primary neurons were cocultured to assess the anti-neuroinflammatory effects of allicin. Neuro-rehabilitation was assessed using behavioral experiments such as the rotarod and morris water maze (MWM) tests.

Results

Allicin treatment reduced TNF-α, IL-1β, IL-6, ROS levels, and the expression of NLRP3 and TLR4 proteins in mice with CCI, while IL-4 and IL-10 levels remained unchanged. Additionally, allicin reduced tissue lesions and cell death after CCI. The transcriptomic analysis revealed that mitophagy was important in allicin-related molecular pathways. The translocation of CL from IMM to OMM was facilitated by allicin, as demonstrated by flow cytometry and lipidomic analyses. Importantly, allicin increased PKC-δ expression and PLS3 phosphorylation in the CL-related mitophagy process in both the CCI and Bv2 cell stretch models. These findings suggest that allicin reduces mitophagy-related neuroinflammation and further prevents neuronal injury in vitro. Rottlerin, a selective PKC-δ inhibitor, effectively diminished allicin's capacity to reduce neuroinflammation, correlating with worsened motor function and cognitive abilities. Thus, CCI-induced behavioral deficits were also ameliorated by the administration of allicin via a PKC-δ-related mitophagy.

Conclusions

This study uncovers a novel mechanism where allicin enhances PKC-δ expression and PLS3 phosphorylation, facilitating CL translocation to the OMM and activating mitophagy, thereby reducing TBI-induced neuroinflammation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy Effect of Qishen Yiqi dripping pills on the classification of ejection fraction in patients with ischaemic heart failure: A prospective cohort study Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2 (+)-Borneol enhances the protective effect of edaravone against cerebral ischemia/reperfusion injury by targeting OAT3/P-gp transporters for drug delivery into the brain Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1