Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2025-02-17 DOI:10.1016/j.phymed.2025.156541
Jinfen Chen , Xingping Quan , Yiyang Li , Junming Chen , Jiacheng Hu , Manfei Zhou , Ying Chen , Jiali Chen , Caisheng Wu , Hua Yu , Yonghua Zhao
{"title":"Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke","authors":"Jinfen Chen ,&nbsp;Xingping Quan ,&nbsp;Yiyang Li ,&nbsp;Junming Chen ,&nbsp;Jiacheng Hu ,&nbsp;Manfei Zhou ,&nbsp;Ying Chen ,&nbsp;Jiali Chen ,&nbsp;Caisheng Wu ,&nbsp;Hua Yu ,&nbsp;Yonghua Zhao","doi":"10.1016/j.phymed.2025.156541","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ischemic stroke is a life-threatening cerebrovascular disease with limited therapeutic options. During the progression of acute ischemic stroke (AIS), neutrophil-involved inflammation mediated by high mobility group box 1 (HMGB1) considerably contributes to intensification of neuronal injury. <em>Siegesbeckia orientalis</em> L. (SO), one of the primary sources of Sigesbeckiae Herba, is promising in anti-neuroinflammation and neutrophil function modulation. Consequently, it is supposed that SO could fight against neuronal inflammatory injury following AIS.</div></div><div><h3>Purpose</h3><div>The current study struggles to explore the ameliorative effects of ethanol extract of SO (EESO) on neuronal inflammatory injury following AIS, and dissect the related mechanisms focusing on HMGB1-driven neutrophil recruitment and neutrophil extracellular traps (NETs) generation.</div></div><div><h3>Methods</h3><div>Murine photothrombotic stroke model was established to evaluate the ameliorative effects of EESO administration against AIS. Histopathological examination and immunofluorescence staining were conducted for the observation of cerebral neuronal injury, neutrophil infiltration and NETs generation. Additionally, inflammatory indexes and serum HMGB1 levels were also detected through qPCR and ELISA, respectively. <em>In vitro</em>, the effects of EESO-containing serum administration on neutrophil migration and NETs generation were also assessed. HMGB1-overexpressed mimic transfection, cellular thermal shift assay and coimmunoprecipitation were employed to investigate whether the compounds from EESO-containing serum targeted HMGB1 to block the receptor for advanced glycation end products (RAGE)-CD11b interaction. Furthermore, potential active compounds of EESO targeting HMGB1 were screened and verified.</div></div><div><h3>Results</h3><div>EESO administration alleviated photochemically induced murine AIS as revealed by remarkably reducing infract volume as well as improving cerebral blood flow and neurological functions. Moreover, EESO administration prominently mitigated secondary neuronal injury, restrained neutrophil infiltration and NETs generation, as well as lowered the levels of serum pro-inflammatory mediators and HMGB1. <em>In vitro</em>, the compounds in EESO-containing serum directly interacted with neuron-derived HMGB1. HMGB1-driven neutrophil migration and NETs generation through the RAGE-CD11b interaction were also reversed by EESO-containing serum administration. Additionally, isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol, as the active components, contributed to the suppressive effects of EESO on neutrophil migration and NETs generation driven by HMGB1.</div></div><div><h3>Conclusion</h3><div>In the present study, it was demonstrated that HMGB1 promoted interaction between CD11b and RAGE to drive NETs generation for the first time. Furthermore, EESO was proved to target neuron-derived HMGB1 to inhibit neutrophil infiltration and NETs generation against neuronal inflammatory injury poststroke, which was attributed to the components absorbed in the blood including isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"139 ","pages":"Article 156541"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325001825","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Ischemic stroke is a life-threatening cerebrovascular disease with limited therapeutic options. During the progression of acute ischemic stroke (AIS), neutrophil-involved inflammation mediated by high mobility group box 1 (HMGB1) considerably contributes to intensification of neuronal injury. Siegesbeckia orientalis L. (SO), one of the primary sources of Sigesbeckiae Herba, is promising in anti-neuroinflammation and neutrophil function modulation. Consequently, it is supposed that SO could fight against neuronal inflammatory injury following AIS.

Purpose

The current study struggles to explore the ameliorative effects of ethanol extract of SO (EESO) on neuronal inflammatory injury following AIS, and dissect the related mechanisms focusing on HMGB1-driven neutrophil recruitment and neutrophil extracellular traps (NETs) generation.

Methods

Murine photothrombotic stroke model was established to evaluate the ameliorative effects of EESO administration against AIS. Histopathological examination and immunofluorescence staining were conducted for the observation of cerebral neuronal injury, neutrophil infiltration and NETs generation. Additionally, inflammatory indexes and serum HMGB1 levels were also detected through qPCR and ELISA, respectively. In vitro, the effects of EESO-containing serum administration on neutrophil migration and NETs generation were also assessed. HMGB1-overexpressed mimic transfection, cellular thermal shift assay and coimmunoprecipitation were employed to investigate whether the compounds from EESO-containing serum targeted HMGB1 to block the receptor for advanced glycation end products (RAGE)-CD11b interaction. Furthermore, potential active compounds of EESO targeting HMGB1 were screened and verified.

Results

EESO administration alleviated photochemically induced murine AIS as revealed by remarkably reducing infract volume as well as improving cerebral blood flow and neurological functions. Moreover, EESO administration prominently mitigated secondary neuronal injury, restrained neutrophil infiltration and NETs generation, as well as lowered the levels of serum pro-inflammatory mediators and HMGB1. In vitro, the compounds in EESO-containing serum directly interacted with neuron-derived HMGB1. HMGB1-driven neutrophil migration and NETs generation through the RAGE-CD11b interaction were also reversed by EESO-containing serum administration. Additionally, isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol, as the active components, contributed to the suppressive effects of EESO on neutrophil migration and NETs generation driven by HMGB1.

Conclusion

In the present study, it was demonstrated that HMGB1 promoted interaction between CD11b and RAGE to drive NETs generation for the first time. Furthermore, EESO was proved to target neuron-derived HMGB1 to inhibit neutrophil infiltration and NETs generation against neuronal inflammatory injury poststroke, which was attributed to the components absorbed in the blood including isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy Effect of Qishen Yiqi dripping pills on the classification of ejection fraction in patients with ischaemic heart failure: A prospective cohort study Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2 (+)-Borneol enhances the protective effect of edaravone against cerebral ischemia/reperfusion injury by targeting OAT3/P-gp transporters for drug delivery into the brain Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1