Development of a graphene oxide multilayer quantum dot-based immunochromatographic strip for the ultrasensitive detection of H7 subtype avian influenza viruses
Jiamin Fu , Ping Wang , Han Wu , Fan Yang , Linfang Cheng , Fumin Liu , Hangping Yao , Nanping Wu , Lihua Xu , Haibo Wu
{"title":"Development of a graphene oxide multilayer quantum dot-based immunochromatographic strip for the ultrasensitive detection of H7 subtype avian influenza viruses","authors":"Jiamin Fu , Ping Wang , Han Wu , Fan Yang , Linfang Cheng , Fumin Liu , Hangping Yao , Nanping Wu , Lihua Xu , Haibo Wu","doi":"10.1016/j.psj.2025.104924","DOIUrl":null,"url":null,"abstract":"<div><div>Since March 2013, the H7N9 subtype of avian influenza virus (AIV) has become an important zoonotic infectious disease, garnering significant global attention because of its potential to affect human health. Establishing a rapid, effective, and sensitive method to detect H7 subtype AIVs is crucial for disease control. In this study, we developed a graphene oxide multilayer quantum dot-based immunochromatographic strip for the ultrasensitive detection of H7 subtype AIVs. The method demonstrated excellent sensitivity, with a limit of detection of 0.063 hemagglutinin units and 0.016 ng/ml for the hemagglutinin protein. The method exhibited remarkable specificity, with no reaction with other subtypes of influenza A virus andno cross-reactivity with other types of avian virus. Additionally, this method exhibited excellent reproducibility, with both inter-group and intra-group variations remaining below 10 %. Preliminary testing on avian clinical samples showed impressive consistency, underscoring the method's reliability. These initial results suggest that this detection approach has significant potential for widespread use in analyzing avian clinical samples, indicating substantial promise for its future application in various diagnostic settings.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 4","pages":"Article 104924"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125001634","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Since March 2013, the H7N9 subtype of avian influenza virus (AIV) has become an important zoonotic infectious disease, garnering significant global attention because of its potential to affect human health. Establishing a rapid, effective, and sensitive method to detect H7 subtype AIVs is crucial for disease control. In this study, we developed a graphene oxide multilayer quantum dot-based immunochromatographic strip for the ultrasensitive detection of H7 subtype AIVs. The method demonstrated excellent sensitivity, with a limit of detection of 0.063 hemagglutinin units and 0.016 ng/ml for the hemagglutinin protein. The method exhibited remarkable specificity, with no reaction with other subtypes of influenza A virus andno cross-reactivity with other types of avian virus. Additionally, this method exhibited excellent reproducibility, with both inter-group and intra-group variations remaining below 10 %. Preliminary testing on avian clinical samples showed impressive consistency, underscoring the method's reliability. These initial results suggest that this detection approach has significant potential for widespread use in analyzing avian clinical samples, indicating substantial promise for its future application in various diagnostic settings.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.