3D network of graphene materials for alkali metal ion batteries

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY EnergyChem Pub Date : 2025-02-16 DOI:10.1016/j.enchem.2025.100149
Zhipeng Sun , Yue Wang , Xiangfen Jiang , Yoshio Bando , Xuebin Wang
{"title":"3D network of graphene materials for alkali metal ion batteries","authors":"Zhipeng Sun ,&nbsp;Yue Wang ,&nbsp;Xiangfen Jiang ,&nbsp;Yoshio Bando ,&nbsp;Xuebin Wang","doi":"10.1016/j.enchem.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of the economy, the commercial landscape of lithium-ion batteries has expanded significantly. However, traditional graphite anodes are often inadequate for applications demanding high energy and power densities, such as in drones and electric vehicles, due to limited capacity and rate capability, necessitating enhancements. Emerging sodium and potassium-ion batteries, with resource availability estimated to be 1000 times that of lithium, are particularly suited for grid-level energy storage, supporting photovoltaic systems. Given the physical and chemical advantages of carbon materials, there has been increasing interest in advanced carbon structures for lithium-, sodium-, and potassium-ion batteries. Notably, 3D network of graphene offers pathways for enhanced ion diffusion and electron transport, and its expanded interlayer spacing holds promise for sodium and potassium storage, potentially improving capacity, power, and longevity as a binder-free anode. This review elucidates the preparation techniques for 3D-network graphene, examines its applications in alkali ion battery cathodes and anodes, and discusses future advancements in this area.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 2","pages":"Article 100149"},"PeriodicalIF":22.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778025000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of the economy, the commercial landscape of lithium-ion batteries has expanded significantly. However, traditional graphite anodes are often inadequate for applications demanding high energy and power densities, such as in drones and electric vehicles, due to limited capacity and rate capability, necessitating enhancements. Emerging sodium and potassium-ion batteries, with resource availability estimated to be 1000 times that of lithium, are particularly suited for grid-level energy storage, supporting photovoltaic systems. Given the physical and chemical advantages of carbon materials, there has been increasing interest in advanced carbon structures for lithium-, sodium-, and potassium-ion batteries. Notably, 3D network of graphene offers pathways for enhanced ion diffusion and electron transport, and its expanded interlayer spacing holds promise for sodium and potassium storage, potentially improving capacity, power, and longevity as a binder-free anode. This review elucidates the preparation techniques for 3D-network graphene, examines its applications in alkali ion battery cathodes and anodes, and discusses future advancements in this area.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
期刊最新文献
3D network of graphene materials for alkali metal ion batteries Controlling rhodium-based nanomaterials for high-efficiency energy-related electrocatalysis Research progress of coordination materials for electrocatalytic nitrogen oxides species conversion into high-value chemicals Activity rationalization and mechanism tracking of CO2 photoreduction over 2D-based layered-bismuth-oxyhalides Functional additives for proton exchange membrane fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1