Controlling rhodium-based nanomaterials for high-efficiency energy-related electrocatalysis

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY EnergyChem Pub Date : 2025-02-16 DOI:10.1016/j.enchem.2025.100148
Bin Sun , Wei Zhong , Huimin Liu , Xuan Ai , Shuhe Han , Yu Chen
{"title":"Controlling rhodium-based nanomaterials for high-efficiency energy-related electrocatalysis","authors":"Bin Sun ,&nbsp;Wei Zhong ,&nbsp;Huimin Liu ,&nbsp;Xuan Ai ,&nbsp;Shuhe Han ,&nbsp;Yu Chen","doi":"10.1016/j.enchem.2025.100148","DOIUrl":null,"url":null,"abstract":"<div><div>The design and control of rhodium (Rh)-based nanomaterials have become critical strategies for enhancing electrocatalyst performance in energy-related applications. Recent advancements in this field have led to the development of diverse Rh-based nanostructures with tailored properties, achieving significant improvements in catalytic efficiency and durability. Thus, a comprehensive understanding of Rh-based nanomaterials, and their roles in electrocatalysis is vital for advancing future research and application. This review systematically summarizes design strategies and structural characteristics of various Rh-based nanomaterials, including three-dimensional (3D), two-dimensional (2D), one-dimensional (1D), zero-dimensional (0D) structures such as clusters and single-atom catalysts. Additionally, we highlight electrochemical performance enhancement strategies through catalyst design, including surface and interface engineering, strain engineering, defect engineering, and alloying effect. Furthermore, we discuss their applications in critical electrocatalytic reactions, including water electrolysis, nitrogen cycle processes, and fuel cell cathode and anode reactions, while analyzing their structure-activity relationships and mechanisms. This review serves as a critical link between material design and electrocatalytic performance of Rh-based nanomaterials, offering an invaluable reference for researchers in the field. Finally, we also identify key challenges and propose future opportunities to inspire the rational design of Rh-based catalysts for sustainable energy technologies.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 2","pages":"Article 100148"},"PeriodicalIF":22.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778025000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design and control of rhodium (Rh)-based nanomaterials have become critical strategies for enhancing electrocatalyst performance in energy-related applications. Recent advancements in this field have led to the development of diverse Rh-based nanostructures with tailored properties, achieving significant improvements in catalytic efficiency and durability. Thus, a comprehensive understanding of Rh-based nanomaterials, and their roles in electrocatalysis is vital for advancing future research and application. This review systematically summarizes design strategies and structural characteristics of various Rh-based nanomaterials, including three-dimensional (3D), two-dimensional (2D), one-dimensional (1D), zero-dimensional (0D) structures such as clusters and single-atom catalysts. Additionally, we highlight electrochemical performance enhancement strategies through catalyst design, including surface and interface engineering, strain engineering, defect engineering, and alloying effect. Furthermore, we discuss their applications in critical electrocatalytic reactions, including water electrolysis, nitrogen cycle processes, and fuel cell cathode and anode reactions, while analyzing their structure-activity relationships and mechanisms. This review serves as a critical link between material design and electrocatalytic performance of Rh-based nanomaterials, offering an invaluable reference for researchers in the field. Finally, we also identify key challenges and propose future opportunities to inspire the rational design of Rh-based catalysts for sustainable energy technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
期刊最新文献
3D network of graphene materials for alkali metal ion batteries Controlling rhodium-based nanomaterials for high-efficiency energy-related electrocatalysis Research progress of coordination materials for electrocatalytic nitrogen oxides species conversion into high-value chemicals Activity rationalization and mechanism tracking of CO2 photoreduction over 2D-based layered-bismuth-oxyhalides Functional additives for proton exchange membrane fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1