Lukai Yuan , Xin Lin , Lilin Wang , Hanlin Ding , Haiou Yang , Jun Yu
{"title":"Achieving advanced isotropic mechanical properties in a novel L-DED near-α titanium alloy with synergistic alloying modification of Si and B","authors":"Lukai Yuan , Xin Lin , Lilin Wang , Hanlin Ding , Haiou Yang , Jun Yu","doi":"10.1016/j.msea.2025.148076","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature titanium alloys are ideal for extreme environments due to their lightweight and high strength at elevated temperatures. Laser direct energy deposition (L-DED) enables the production of high-performance, complex high-temperature titanium alloy components, offering significant potential in the aerospace sector. However, the significant anisotropy in the deposit, caused by the presence of epitaxially grown columnar β grains, severely restricts its further application. Although isotropy has been achieved in L-DED Ti or Ti6Al4V using eutectoid elements, the high-temperature service conditions limit their applicability. This study used a synergistic alloying modification of Si and B to promote the columnar to equiaxed transition (CET) of β grains in L-DED near-α titanium alloy Ti6242S. The effects of Si and B alloying on microstructure evolution and both room- and high-temperature mechanical properties were analyzed. Si and B exhibit a notable mutual replacement effect in promoting CET. The synergistic modification of Si and B effectively prevents the formation of silicide and TiB by reducing their individual contents. Fully equiaxed β grains were achieved in L-DED Ti6242S-0.16Si-0.05B alloy deposit, which exhibited a high yield strength of approximately 900 MPa and 13 % elongation at room temperature. The high-temperature yield strength at 480 °C reached 590 MPa, and the step-creep rupture life increased significantly for the Ti6242S-0.16Si-0.05B alloy deposit at 525 °C under 480 MPa–680 MPa.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"928 ","pages":"Article 148076"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325002941","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature titanium alloys are ideal for extreme environments due to their lightweight and high strength at elevated temperatures. Laser direct energy deposition (L-DED) enables the production of high-performance, complex high-temperature titanium alloy components, offering significant potential in the aerospace sector. However, the significant anisotropy in the deposit, caused by the presence of epitaxially grown columnar β grains, severely restricts its further application. Although isotropy has been achieved in L-DED Ti or Ti6Al4V using eutectoid elements, the high-temperature service conditions limit their applicability. This study used a synergistic alloying modification of Si and B to promote the columnar to equiaxed transition (CET) of β grains in L-DED near-α titanium alloy Ti6242S. The effects of Si and B alloying on microstructure evolution and both room- and high-temperature mechanical properties were analyzed. Si and B exhibit a notable mutual replacement effect in promoting CET. The synergistic modification of Si and B effectively prevents the formation of silicide and TiB by reducing their individual contents. Fully equiaxed β grains were achieved in L-DED Ti6242S-0.16Si-0.05B alloy deposit, which exhibited a high yield strength of approximately 900 MPa and 13 % elongation at room temperature. The high-temperature yield strength at 480 °C reached 590 MPa, and the step-creep rupture life increased significantly for the Ti6242S-0.16Si-0.05B alloy deposit at 525 °C under 480 MPa–680 MPa.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.