Balancing the strength and ductility of MnFeCoNi high-entropy alloy through regulating precipitates and nanostructures

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2025-02-19 DOI:10.1016/j.msea.2025.148099
C.J. Li , L.W. Zhang , J.P. Wei , Z.Y. Xu , P. Gao , Q. Lu , Q. Yuan , J.H. Yi
{"title":"Balancing the strength and ductility of MnFeCoNi high-entropy alloy through regulating precipitates and nanostructures","authors":"C.J. Li ,&nbsp;L.W. Zhang ,&nbsp;J.P. Wei ,&nbsp;Z.Y. Xu ,&nbsp;P. Gao ,&nbsp;Q. Lu ,&nbsp;Q. Yuan ,&nbsp;J.H. Yi","doi":"10.1016/j.msea.2025.148099","DOIUrl":null,"url":null,"abstract":"<div><div>This study prepared MnFeCoNi high-entropy alloys with precipitates and high-density lattice defects (dislocations, stacking faults, deformation twins, etc.) using powder metallurgy combined with deep cryogenic deformation (DCD). The alloy demonstrates exceptional yield strength (1370 ± 56.64 MPa) and ultimate tensile strength (1463 ± 74.05 MPa), but exhibits limited elongation (3.18 %). Annealing the alloy at different temperatures enables microstructure evolution, allowing precise control over the morphology, quantity, and distribution of defects. This achieves an optimal balance between yield strength (1209 ± 30.88 MPa) and elongation rate (8.51 %). The results indicate that the outstanding mechanical properties of high entropy alloys primarily arise from the synergistic strengthening effect of its nano-spherical σ phase and high-density lattice defects, including dislocations, stacking faults, and deformation twins.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"928 ","pages":"Article 148099"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932500317X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study prepared MnFeCoNi high-entropy alloys with precipitates and high-density lattice defects (dislocations, stacking faults, deformation twins, etc.) using powder metallurgy combined with deep cryogenic deformation (DCD). The alloy demonstrates exceptional yield strength (1370 ± 56.64 MPa) and ultimate tensile strength (1463 ± 74.05 MPa), but exhibits limited elongation (3.18 %). Annealing the alloy at different temperatures enables microstructure evolution, allowing precise control over the morphology, quantity, and distribution of defects. This achieves an optimal balance between yield strength (1209 ± 30.88 MPa) and elongation rate (8.51 %). The results indicate that the outstanding mechanical properties of high entropy alloys primarily arise from the synergistic strengthening effect of its nano-spherical σ phase and high-density lattice defects, including dislocations, stacking faults, and deformation twins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Editorial Board Balancing the strength and ductility of MnFeCoNi high-entropy alloy through regulating precipitates and nanostructures High-temperature pre-aging induced coherent precipitation for Concurrent strength and conductivity enhancement in Cu-Mn-Co-P alloys Exploration of hypereutectoid compositions for achieving and enhancing superelasticity in biomedical Ti–Au–Mo alloys The role of aging in the microstructure and mechanical properties of two multi-principal element alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1