Silica matrix-driven modulation of ferrite nanoparticles: Insights into synthesis, coercivity and magnetization

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2025-02-17 DOI:10.1016/j.inoche.2025.114137
Ljubica Andjelković , Marija Šuljagić , Vladimir Pavlović , Ana Mraković , Matjaž Panjan , Janez Kovač , Marin Tadić
{"title":"Silica matrix-driven modulation of ferrite nanoparticles: Insights into synthesis, coercivity and magnetization","authors":"Ljubica Andjelković ,&nbsp;Marija Šuljagić ,&nbsp;Vladimir Pavlović ,&nbsp;Ana Mraković ,&nbsp;Matjaž Panjan ,&nbsp;Janez Kovač ,&nbsp;Marin Tadić","doi":"10.1016/j.inoche.2025.114137","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a thermal decomposition synthesis method to synthesize bare and embedded cobalt ferrite nanoparticles in a silica matrix, enabling a direct comparison between them to examine agglomeration and particle size effects on magnetic properties. XRPD confirmed the cubic spinel structure, with reduced crystallinity in the composite due to the amorphous silica. FTIR analysis verified CoFe<sub>2</sub>O<sub>4</sub> incorporation into silica, showing metal–oxygen (560–410 cm<sup>−1</sup>) and Si–O–Si (1030 cm<sup>−1</sup>) bonds. TEM revealed agglomerated particles (≈30 nm) in bare CoFe<sub>2</sub>O<sub>4</sub>, whereas the composite exhibited smaller (≈20 nm), dispersed nanoparticles within the silica. The XPS spectra confirm that the Fe and Co ions in both samples exhibit oxidation states of Fe<sup>3+</sup> and Co<sup>2+</sup>. Magnetic characterization showed contrasting behaviors: bare CoFe<sub>2</sub>O<sub>4</sub> exhibited higher coercivity at 300 K (1509 Oe) but lower at 5 K (7172 Oe) compared to the composite (1073 Oe and 8407 Oe, respectively). These trends were linked to particle size distributions, with the silica matrix promoting smaller superparamagnetic nanoparticles and reduced inter-particle interactions. These behaviors are driven by the interplay between superparamagnetic and ferrimagnetic nanoparticle populations. The silica plays a key role in controlling particle size, agglomeration and magnetic properties, offering insights into tailoring nanocomposites for data storage, biomedicine, and catalysis. Future work should optimize cobalt ferrite weight percentages in the silica matrix to achieve control over particle size and agglomeration.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"175 ","pages":"Article 114137"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325002515","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a thermal decomposition synthesis method to synthesize bare and embedded cobalt ferrite nanoparticles in a silica matrix, enabling a direct comparison between them to examine agglomeration and particle size effects on magnetic properties. XRPD confirmed the cubic spinel structure, with reduced crystallinity in the composite due to the amorphous silica. FTIR analysis verified CoFe2O4 incorporation into silica, showing metal–oxygen (560–410 cm−1) and Si–O–Si (1030 cm−1) bonds. TEM revealed agglomerated particles (≈30 nm) in bare CoFe2O4, whereas the composite exhibited smaller (≈20 nm), dispersed nanoparticles within the silica. The XPS spectra confirm that the Fe and Co ions in both samples exhibit oxidation states of Fe3+ and Co2+. Magnetic characterization showed contrasting behaviors: bare CoFe2O4 exhibited higher coercivity at 300 K (1509 Oe) but lower at 5 K (7172 Oe) compared to the composite (1073 Oe and 8407 Oe, respectively). These trends were linked to particle size distributions, with the silica matrix promoting smaller superparamagnetic nanoparticles and reduced inter-particle interactions. These behaviors are driven by the interplay between superparamagnetic and ferrimagnetic nanoparticle populations. The silica plays a key role in controlling particle size, agglomeration and magnetic properties, offering insights into tailoring nanocomposites for data storage, biomedicine, and catalysis. Future work should optimize cobalt ferrite weight percentages in the silica matrix to achieve control over particle size and agglomeration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Prospects and challenges of thin film coating materials and their applications Tunned the structure and magnetic characteristics of noble metal (Pd)-doped Ba-Sr nanohexaferrites Modeling and numerical analysis of FTO/TiO2/Cs2BiAgI6/CBTS/Au solar cells for enhanced photovoltaic performance Silica matrix-driven modulation of ferrite nanoparticles: Insights into synthesis, coercivity and magnetization Effects of water/ethanol solvent ratios on the morphology of SnO2 nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1