Qian Ye , Zhiying Xiao , Chunli Bai , Hong Yao , Liang Zhao , Wen-Song Tan
{"title":"Unveiling the multi-characteristic potential of hyper-productive suspension MDCK cells for advanced influenza A virus propagation","authors":"Qian Ye , Zhiying Xiao , Chunli Bai , Hong Yao , Liang Zhao , Wen-Song Tan","doi":"10.1016/j.vaccine.2025.126900","DOIUrl":null,"url":null,"abstract":"<div><div>The global population faces persistent threats from influenza viruses, with vaccination remaining the most cost-effective preventive measure against influenza. Mammalian cell-based influenza vaccine production has garnered significant attention due to its enhanced safety profile, process controllability, and ability to circumvent adaptive mutations commonly associated with traditional egg-based vaccines, and the particular promise of suspension cell-based production systems for their convenience, economic viability, and scalability potential. Despite years of development and an increasing number of approved animal substrate-based vaccines, numerous challenges persist, especially the incomplete understanding of influenza virus amplification features in the producing cell lines. In previous research, we developed a high-titer suspension MDCK cell-based influenza virus production process and established a high-generation MDCK cell line (MDCK-HG). This study demonstrated enhanced productive capacity of MDCK-HG cells across diverse operational conditions. The maximum hemagglutination titer achieved 15.02 Log<sub>2</sub>HAU/100 μL for H9N2 strain and 12.55 Log<sub>2</sub>HAU/100 μL for H1N1 strain, which evidenced by a 56.95 % and a 189.79 % increase compared to the original suspension MDCK cells. Through kinetics analyses, transcriptomic profiling, and metabolic characterization, we identified the kinetic features of high-generation cell lines for efficient influenza virus production and discovered that the redistribution of cell cycles, enhanced anti-apoptotic capabilities, elevated membrane synthesis rates, and efficient energy metabolism likely contribute to their increased viral production capacity. These findings not only deepen our understanding of the influenza vaccine production process but also provide valuable guidance for future systematic metabolic engineering efforts aimed at establishing more robust vaccine production processes.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"52 ","pages":"Article 126900"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X25001975","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global population faces persistent threats from influenza viruses, with vaccination remaining the most cost-effective preventive measure against influenza. Mammalian cell-based influenza vaccine production has garnered significant attention due to its enhanced safety profile, process controllability, and ability to circumvent adaptive mutations commonly associated with traditional egg-based vaccines, and the particular promise of suspension cell-based production systems for their convenience, economic viability, and scalability potential. Despite years of development and an increasing number of approved animal substrate-based vaccines, numerous challenges persist, especially the incomplete understanding of influenza virus amplification features in the producing cell lines. In previous research, we developed a high-titer suspension MDCK cell-based influenza virus production process and established a high-generation MDCK cell line (MDCK-HG). This study demonstrated enhanced productive capacity of MDCK-HG cells across diverse operational conditions. The maximum hemagglutination titer achieved 15.02 Log2HAU/100 μL for H9N2 strain and 12.55 Log2HAU/100 μL for H1N1 strain, which evidenced by a 56.95 % and a 189.79 % increase compared to the original suspension MDCK cells. Through kinetics analyses, transcriptomic profiling, and metabolic characterization, we identified the kinetic features of high-generation cell lines for efficient influenza virus production and discovered that the redistribution of cell cycles, enhanced anti-apoptotic capabilities, elevated membrane synthesis rates, and efficient energy metabolism likely contribute to their increased viral production capacity. These findings not only deepen our understanding of the influenza vaccine production process but also provide valuable guidance for future systematic metabolic engineering efforts aimed at establishing more robust vaccine production processes.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.