Tianyang Feng, Hang Xu, Yafen Yang, Xuemeng Hu, Tianyu Wang, Hao Zhu, Qingqing Sun, David Wei Zhang, Jialin Meng, Lin Chen
{"title":"Organic Synaptic Transistors Based on C8-BTBT/PMMA/PbS QDs for UV to NIR Face Recognition Systems.","authors":"Tianyang Feng, Hang Xu, Yafen Yang, Xuemeng Hu, Tianyu Wang, Hao Zhu, Qingqing Sun, David Wei Zhang, Jialin Meng, Lin Chen","doi":"10.1021/acs.nanolett.5c00032","DOIUrl":null,"url":null,"abstract":"<p><p>Developing optoelectronic synaptic devices with low power consumption, broadband response, and biological compatibility is crucial to simulate the functions of optic nerve. Here, an organic synapse transistor based on C8-BTBT/PMMA/PbS quantum dots (PbS QDs) is fabricated, which has good stability, low power consumption (as low as 0.49 fJ per event under 800 nm near-infrared optical pulse), and broadband response from ultraviolet to near-infrared wavelengths. Based on the trap and release of photogenerated carriers by PbS QDs, a series of synaptic behaviors are simulated by the device. Furthermore, we use artificial neural network as the model to realize the recognition of facial feature image in the broad spectral range; the recognition rate reached 96.25% (350 nm ultraviolet), 92.14% (580 nm visible), and 90.03% (800 nm near-infrared). This work is beneficial for advancing the development of future artificial intelligence vision sensing.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing optoelectronic synaptic devices with low power consumption, broadband response, and biological compatibility is crucial to simulate the functions of optic nerve. Here, an organic synapse transistor based on C8-BTBT/PMMA/PbS quantum dots (PbS QDs) is fabricated, which has good stability, low power consumption (as low as 0.49 fJ per event under 800 nm near-infrared optical pulse), and broadband response from ultraviolet to near-infrared wavelengths. Based on the trap and release of photogenerated carriers by PbS QDs, a series of synaptic behaviors are simulated by the device. Furthermore, we use artificial neural network as the model to realize the recognition of facial feature image in the broad spectral range; the recognition rate reached 96.25% (350 nm ultraviolet), 92.14% (580 nm visible), and 90.03% (800 nm near-infrared). This work is beneficial for advancing the development of future artificial intelligence vision sensing.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.