Wireframe DNA Origami Capable of Vertex-protruding Transformation.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2025-02-19 DOI:10.1002/cbic.202401071
Yosuke Ochi, Wataru Kato, Yoichi Tsutsui, Yuki Gomibuchi, Daichi Tominaga, Keisuke Sakai, Takeshi Araki, Suzunosuke Yoshitake, Takuo Yasunaga, Yusuke V Morimoto, Kazuhiro Maeda, Junichi Taira, Yusuke Sato
{"title":"Wireframe DNA Origami Capable of Vertex-protruding Transformation.","authors":"Yosuke Ochi, Wataru Kato, Yoichi Tsutsui, Yuki Gomibuchi, Daichi Tominaga, Keisuke Sakai, Takeshi Araki, Suzunosuke Yoshitake, Takuo Yasunaga, Yusuke V Morimoto, Kazuhiro Maeda, Junichi Taira, Yusuke Sato","doi":"10.1002/cbic.202401071","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating dynamic behavior of the designed molecular structures provides a foundation for the construction of functional molecular devices. DNA nanotechnology allows conformational changes in two-dimensional and three-dimensional DNA origami nanostructures by introducing flexibility between the faces of the structures. However, dynamic transformations in wireframe DNA origami, composed solely of vertices and edges, remain challenging due to vertex-specific flexibility. We report a wireframe DNA origami capable of vertex-protruding transformation between the open- and closed-form with eight protruding vertices. This reversible transformation is driven by DNA hybridization and a toehold-mediated strand displacement reaction. Spacer strands between vertices and edges were designed to introduce flexibility. Coarse-grained molecular dynamics simulations demonstrated that a longer spacer increases conformational flexibility and can achieve the narrow angles required for the vertex-protruding transformation. The experimental results showed the successful assembly of the open-form structure under optimized salt conditions, as visualized through transmission electron microscopy images. Furthermore, the transformation between the open- and closed-form structures was demonstrated by the sequential addition of signal strands. This vertex-protruding transformation mechanism will expand the design approach of dynamic DNA nanostructures and help develop functional molecular devices for artificial molecular systems.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202401071"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating dynamic behavior of the designed molecular structures provides a foundation for the construction of functional molecular devices. DNA nanotechnology allows conformational changes in two-dimensional and three-dimensional DNA origami nanostructures by introducing flexibility between the faces of the structures. However, dynamic transformations in wireframe DNA origami, composed solely of vertices and edges, remain challenging due to vertex-specific flexibility. We report a wireframe DNA origami capable of vertex-protruding transformation between the open- and closed-form with eight protruding vertices. This reversible transformation is driven by DNA hybridization and a toehold-mediated strand displacement reaction. Spacer strands between vertices and edges were designed to introduce flexibility. Coarse-grained molecular dynamics simulations demonstrated that a longer spacer increases conformational flexibility and can achieve the narrow angles required for the vertex-protruding transformation. The experimental results showed the successful assembly of the open-form structure under optimized salt conditions, as visualized through transmission electron microscopy images. Furthermore, the transformation between the open- and closed-form structures was demonstrated by the sequential addition of signal strands. This vertex-protruding transformation mechanism will expand the design approach of dynamic DNA nanostructures and help develop functional molecular devices for artificial molecular systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Interactive 3D Objects Enhance Scientific Communication of Structural Data. Mitochondria-Targeted Temozolomide Probe for Overcoming MGMT-Mediated Resistance in Glioblastoma. Small Molecule Fluorescent Probes for Glutathione S-Transferase. Conjugation of Human N-Glycans Improves the Drug Properties of Existing Peptides and Proteins. Wireframe DNA Origami Capable of Vertex-protruding Transformation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1