Xin Liu, Zhitao Hu, Emma M. Rettner, Katherine L. Harry, Joel Miscall, Nicholas A. Rorrer, Garret M. Miyake
{"title":"Catalytic closed-loop recycling of polyethylene-like materials produced by acceptorless dehydrogenative polymerization of bio-derived diols","authors":"Xin Liu, Zhitao Hu, Emma M. Rettner, Katherine L. Harry, Joel Miscall, Nicholas A. Rorrer, Garret M. Miyake","doi":"10.1038/s41557-025-01753-8","DOIUrl":null,"url":null,"abstract":"<p>Petroleum-derived polyolefins exhibit diverse properties and are the most important and largest volume class of plastics. However, polyolefins are difficult to efficiently recycle or break down and are now a persistent global contaminant. Broadly replacing polyolefins with bio-derived and degradable polyethylene-like materials is an important yet challenging endeavour towards sustainable plastics. Here we report a solution for circular bio-based polyethylene-like materials synthesized by acceptorless dehydrogenative polymerization from linear and branched diols and their catalytic closed-loop recycling. The polymerization and depolymerization processes utilize earth-abundant manganese complexes as catalysts. These materials exhibit a wide range of mechanical properties, encompassing thermoplastics to plastomers to elastomers. The branched diols, produced through a thiol–ene click reaction, can be polymerized to plastics with significantly enhanced tensile properties, toughness and adhesive properties. These materials could be depolymerized back to monomers through hydrogenation and were separatable with a monomer recovery of up to 99%, unaffected by the presence of dyes and additives. Overall, this system establishes a route to more sustainable plastics.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"50 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01753-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Petroleum-derived polyolefins exhibit diverse properties and are the most important and largest volume class of plastics. However, polyolefins are difficult to efficiently recycle or break down and are now a persistent global contaminant. Broadly replacing polyolefins with bio-derived and degradable polyethylene-like materials is an important yet challenging endeavour towards sustainable plastics. Here we report a solution for circular bio-based polyethylene-like materials synthesized by acceptorless dehydrogenative polymerization from linear and branched diols and their catalytic closed-loop recycling. The polymerization and depolymerization processes utilize earth-abundant manganese complexes as catalysts. These materials exhibit a wide range of mechanical properties, encompassing thermoplastics to plastomers to elastomers. The branched diols, produced through a thiol–ene click reaction, can be polymerized to plastics with significantly enhanced tensile properties, toughness and adhesive properties. These materials could be depolymerized back to monomers through hydrogenation and were separatable with a monomer recovery of up to 99%, unaffected by the presence of dyes and additives. Overall, this system establishes a route to more sustainable plastics.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.