High carbon fixation during thermal stratification period in a subtropical periodic stratified reservoir: Evidences from RDOC conversion efficiency driven by MCP

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-02-20 DOI:10.1016/j.watres.2025.123316
Yikun Jia , Xinlu Su , Tao Zhang , Qiufang He , Jianhong Li , Junbing Pu
{"title":"High carbon fixation during thermal stratification period in a subtropical periodic stratified reservoir: Evidences from RDOC conversion efficiency driven by MCP","authors":"Yikun Jia ,&nbsp;Xinlu Su ,&nbsp;Tao Zhang ,&nbsp;Qiufang He ,&nbsp;Jianhong Li ,&nbsp;Junbing Pu","doi":"10.1016/j.watres.2025.123316","DOIUrl":null,"url":null,"abstract":"<div><div>Recalcitrant dissolved organic carbon (RDOC) generated by microbial carbon pumps (MCP) significantly influences terrestrial waters and may contribute to the formation of a long-lasting carbon sink. However, there remains a notable lack of research on the carbon fixation processes and efficiencies of MCP in response to changes in thermal structure within subtropical reservoirs. In this study, we examined the effectiveness of transforming dissolved inorganic carbon (DIC) into dissolved organic carbon (DOC) and subsequently into RDOC through the influence of MCP at various water depths during both Thermal stratification (TS) periods and Mixing (MX) period in the Dalongdong (DLD) Reservoir, a representative subtropical reservoir. The findings indicate that the conversion efficiency of microbiologically recalcitrant dissolved organic carbon (MRDOC) was typically four times greater during the TS periods compared to the MX period. This increase can be attributed to a higher abundance of bacteria involved in carbon fixation, as well as elevated levels of external semi-labile dissolved organic carbon (SLDOC) and labile dissolved organic carbon (LDOC), along with the accumulation of organic matter. Notably, the conversion efficiency peaked in the thermocline during the Obvious thermal stratification (OTS) period. During the TS periods, heterotrophic and chemoautotrophic bacteria played a significant role in carbon fixation in the epilimnion and thermocline, while fewer bacteria were engaged in carbon fixation in the hypolimnion. Conversely, throughout the MX period, the effects of water temperature and pH result in a diminished role of autotrophic bacteria in carbon fixation, leading to a decline in MRDOC conversion efficiency at all water layers. These results enhance our understanding of the carbon cycling processes influenced by the MCP effect in terrestrial waters experiencing changes in thermal stratification.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"278 ","pages":"Article 123316"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425002301","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recalcitrant dissolved organic carbon (RDOC) generated by microbial carbon pumps (MCP) significantly influences terrestrial waters and may contribute to the formation of a long-lasting carbon sink. However, there remains a notable lack of research on the carbon fixation processes and efficiencies of MCP in response to changes in thermal structure within subtropical reservoirs. In this study, we examined the effectiveness of transforming dissolved inorganic carbon (DIC) into dissolved organic carbon (DOC) and subsequently into RDOC through the influence of MCP at various water depths during both Thermal stratification (TS) periods and Mixing (MX) period in the Dalongdong (DLD) Reservoir, a representative subtropical reservoir. The findings indicate that the conversion efficiency of microbiologically recalcitrant dissolved organic carbon (MRDOC) was typically four times greater during the TS periods compared to the MX period. This increase can be attributed to a higher abundance of bacteria involved in carbon fixation, as well as elevated levels of external semi-labile dissolved organic carbon (SLDOC) and labile dissolved organic carbon (LDOC), along with the accumulation of organic matter. Notably, the conversion efficiency peaked in the thermocline during the Obvious thermal stratification (OTS) period. During the TS periods, heterotrophic and chemoautotrophic bacteria played a significant role in carbon fixation in the epilimnion and thermocline, while fewer bacteria were engaged in carbon fixation in the hypolimnion. Conversely, throughout the MX period, the effects of water temperature and pH result in a diminished role of autotrophic bacteria in carbon fixation, leading to a decline in MRDOC conversion efficiency at all water layers. These results enhance our understanding of the carbon cycling processes influenced by the MCP effect in terrestrial waters experiencing changes in thermal stratification.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Molecular-level insights into dissolved organic matter during Ulva prolifera degradation and its regulation on the environmental behaviour of the organic pollutant tributyl phosphate A hollow fiber supported ionic liquid membrane contactor for continuous extraction of lithium from high magnesium/lithium ratio brine A novel framework for tracking hydrological processes and identifying key factors in mountain-lowland mixed catchments: Implications of forty years of modeling for water management Diversity, influential factor, and communication network construction of quorum sensing bacteria in global wastewater treatment plants Efficient antibiotic tetracycline degradation and toxicity abatement via the perovskite-type CaFexNi1-xO3 assisted heterogeneous electro-Fenton system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1