Chi-Cheung Su, Meinan He, Michael A. Dato, Ziqi Liu, Hasnain Hafiz, Jeffrey Lopez, Khalil Amine
{"title":"Constructing Synthetic Organosulfur Additive for High Voltage Lithium-ion Batteries","authors":"Chi-Cheung Su, Meinan He, Michael A. Dato, Ziqi Liu, Hasnain Hafiz, Jeffrey Lopez, Khalil Amine","doi":"10.1016/j.nanoen.2025.110807","DOIUrl":null,"url":null,"abstract":"Despite its high anodic stability, common organosulfur solvents such as ethyl methyl sulfone and sulfolane typically exhibit poor solid-electrolyte interphase (SEI) formation capability. To address this, the fluorinated organic sulfate 4-(trifluoromethyl)-1,3,2-dioxathiolane 2,2-dioxide (TFDTD) was developed as an effective additive for tailoring organosulfur-based electrolytes in lithium-ion batteries. This development was guided by the functionality selection principle and careful evaluation of feasibility in organic synthesis. TFDTD can be readily synthesized through the reaction between trifluoropropylene glycol and sulfuryl chloride. The ring structure of the organic sulfate enables the formation of a stable SEI on the anode, while the fluorination of the sulfate not only enhances its chemical stability and oxidation potential, but also its effectiveness to protect the anode by increasing its reduction potential, rendering it preferentially reduced on the anode surface before the decomposition of other electrolyte components. Introducing TFDTD facilitates the generation of a robust solid-electrolyte interphase on the graphite anode, significantly enhancing cell performance. Moreover, coupling the use of TFDTD with vinylene carbonate provides further protection on the cathode surface, enabling exceptionally stable, high-voltage, long-term cycling of Gr||NMC full cells.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"6 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its high anodic stability, common organosulfur solvents such as ethyl methyl sulfone and sulfolane typically exhibit poor solid-electrolyte interphase (SEI) formation capability. To address this, the fluorinated organic sulfate 4-(trifluoromethyl)-1,3,2-dioxathiolane 2,2-dioxide (TFDTD) was developed as an effective additive for tailoring organosulfur-based electrolytes in lithium-ion batteries. This development was guided by the functionality selection principle and careful evaluation of feasibility in organic synthesis. TFDTD can be readily synthesized through the reaction between trifluoropropylene glycol and sulfuryl chloride. The ring structure of the organic sulfate enables the formation of a stable SEI on the anode, while the fluorination of the sulfate not only enhances its chemical stability and oxidation potential, but also its effectiveness to protect the anode by increasing its reduction potential, rendering it preferentially reduced on the anode surface before the decomposition of other electrolyte components. Introducing TFDTD facilitates the generation of a robust solid-electrolyte interphase on the graphite anode, significantly enhancing cell performance. Moreover, coupling the use of TFDTD with vinylene carbonate provides further protection on the cathode surface, enabling exceptionally stable, high-voltage, long-term cycling of Gr||NMC full cells.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.