Andreas P. Wion, Ian S. Pearse, Max Broxson, Miranda D. Redmond
{"title":"Mast hindcasts reveal pervasive effects of extreme drought on a foundational conifer species","authors":"Andreas P. Wion, Ian S. Pearse, Max Broxson, Miranda D. Redmond","doi":"10.1111/nph.20321","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Predicting seed production is challenging because many plants produce highly variable crops among years (i.e. masting), but doing so can inform forest management, conservation, and our understanding of ecosystem trajectories in a changing climate. We evaluated the ability of an existing model to forecast masting in an ecologically and culturally important tree species in the southwestern United States, <i>Pinus edulis</i>.</li>\n<li>Annual seed cone production was predicted using cross-validation techniques on two unique out-of-sample datasets, representing different collection methods and spatial scales (cone scars and cone counts). We then hindcasted this model into the historical past to evaluate whether seed production has declined with the onset of extreme drought conditions in western North America.</li>\n<li>The evaluated model had fair skill, with root-mean-squared error of 6%. The model had better skill predicting the interannual variability within a site than among sites (i.e. within years). Hindcast analyses indicated recent (2000–2024) mean annual cone production was 30.6% lower than in the past century (1900–1999).</li>\n<li>Mast forecasts are within reach, but much room remains for improvement. Forecasts may be a powerful tool to anticipate the effects of climate change on forests and woodlands.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20321","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting seed production is challenging because many plants produce highly variable crops among years (i.e. masting), but doing so can inform forest management, conservation, and our understanding of ecosystem trajectories in a changing climate. We evaluated the ability of an existing model to forecast masting in an ecologically and culturally important tree species in the southwestern United States, Pinus edulis.
Annual seed cone production was predicted using cross-validation techniques on two unique out-of-sample datasets, representing different collection methods and spatial scales (cone scars and cone counts). We then hindcasted this model into the historical past to evaluate whether seed production has declined with the onset of extreme drought conditions in western North America.
The evaluated model had fair skill, with root-mean-squared error of 6%. The model had better skill predicting the interannual variability within a site than among sites (i.e. within years). Hindcast analyses indicated recent (2000–2024) mean annual cone production was 30.6% lower than in the past century (1900–1999).
Mast forecasts are within reach, but much room remains for improvement. Forecasts may be a powerful tool to anticipate the effects of climate change on forests and woodlands.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.