{"title":"N-cadherin-triggered myosin II inactivation provides tumor cells with a mechanical cell competition advantage and chemotherapy resistance","authors":"Zhenlin Dai, Shengkai Chen, Jianbo Shi, Mengyu Rui, Qin Xu","doi":"10.1016/j.devcel.2025.01.020","DOIUrl":null,"url":null,"abstract":"The concept that mechanical cell competition may contribute to tumor cell expansion has been widely discussed. However, whether this process could occur during natural tumor progression, as well as its underlying mechanisms and clinical implications, remains largely unknown. In this study, we observed that self-seeded tumor cell lines of human oral cancer, SCC9- and SCC25-seeded cells, exhibited a mechanical competitive advantage, outcompeted neighboring cells, and became “winner” cells. Mechanical compression-induced calcium influx activates myosin II in “loser” cells, leading to apoptotic nuclear breakdown and subsequent clearance. N-cadherin/Rac1/PAK1/myosin light-chain kinase (MLCK)-controlled myosin II inactivation endows cells with resistance to mechanical stress and superior cellular flexibility, thus providing a cell competition advantage to self-seeded cells. The activation of the N-cadherin/Rac1/PAK1/MLCK/myosin II signaling axis is associated with drug resistance. Together, these results suggest that N-cadherin/Rac1/PAK1/MLCK signaling-induced myosin II inactivation enables tumor cells to acquire resistance to mechanical stress and a competitive advantage. Our study also provides insights into drug resistance from a stress-sensitivity perspective.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"12 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.01.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The concept that mechanical cell competition may contribute to tumor cell expansion has been widely discussed. However, whether this process could occur during natural tumor progression, as well as its underlying mechanisms and clinical implications, remains largely unknown. In this study, we observed that self-seeded tumor cell lines of human oral cancer, SCC9- and SCC25-seeded cells, exhibited a mechanical competitive advantage, outcompeted neighboring cells, and became “winner” cells. Mechanical compression-induced calcium influx activates myosin II in “loser” cells, leading to apoptotic nuclear breakdown and subsequent clearance. N-cadherin/Rac1/PAK1/myosin light-chain kinase (MLCK)-controlled myosin II inactivation endows cells with resistance to mechanical stress and superior cellular flexibility, thus providing a cell competition advantage to self-seeded cells. The activation of the N-cadherin/Rac1/PAK1/MLCK/myosin II signaling axis is associated with drug resistance. Together, these results suggest that N-cadherin/Rac1/PAK1/MLCK signaling-induced myosin II inactivation enables tumor cells to acquire resistance to mechanical stress and a competitive advantage. Our study also provides insights into drug resistance from a stress-sensitivity perspective.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.