Flavonoid contributors to bitterness in juice from Citrus and Citrus hybrids with/without Poncirus trifoliata in their pedigree

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry: X Pub Date : 2025-02-01 DOI:10.1016/j.fochx.2025.102289
Kristen A. Jeffries , Zhen Fan , Matthew Mattia , Ed Stover , Elizabeth Baldwin , John A. Manthey , Andrew Breksa , Jinhe Bai , Anne Plotto
{"title":"Flavonoid contributors to bitterness in juice from Citrus and Citrus hybrids with/without Poncirus trifoliata in their pedigree","authors":"Kristen A. Jeffries ,&nbsp;Zhen Fan ,&nbsp;Matthew Mattia ,&nbsp;Ed Stover ,&nbsp;Elizabeth Baldwin ,&nbsp;John A. Manthey ,&nbsp;Andrew Breksa ,&nbsp;Jinhe Bai ,&nbsp;Anne Plotto","doi":"10.1016/j.fochx.2025.102289","DOIUrl":null,"url":null,"abstract":"<div><div>Bitterness and off-flavors are problematic in some citrus genotypes, particularly <em>Citrus</em> hybrids with <em>Poncirus trifoliata</em> in their pedigrees that have shown tolerance to the devastating citrus greening disease. Comprehensive chemical profiling combined with sensory analysis of bitterness were used to determine bitter compounds in citrus juice. A selection of genotypes including orange, grapefruit, pummelo, tangelo, mandarin hybrids with and without <em>P. trifoliata</em> in their pedigrees, as well as pure <em>P. trifoliata,</em> were analyzed due to their broad range in bitterness intensity. Widely targeted LC-MS/MS analysis of flavonoids and limonoids confirmed the role of limonin, nomilin, neohesperidin and poncirin in bitterness perception. Other flavonoids, mainly rhoifolin, apigenin, and tricin also correlated with bitterness. Notably, rhoifolin was more strongly correlated with bitterness than the previously known bitter compounds. Identifying the compounds that contribute to bitterness in citrus is a crucial first step for future breeding efforts aimed at reducing these compounds biosynthetically.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"26 ","pages":"Article 102289"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525001361","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bitterness and off-flavors are problematic in some citrus genotypes, particularly Citrus hybrids with Poncirus trifoliata in their pedigrees that have shown tolerance to the devastating citrus greening disease. Comprehensive chemical profiling combined with sensory analysis of bitterness were used to determine bitter compounds in citrus juice. A selection of genotypes including orange, grapefruit, pummelo, tangelo, mandarin hybrids with and without P. trifoliata in their pedigrees, as well as pure P. trifoliata, were analyzed due to their broad range in bitterness intensity. Widely targeted LC-MS/MS analysis of flavonoids and limonoids confirmed the role of limonin, nomilin, neohesperidin and poncirin in bitterness perception. Other flavonoids, mainly rhoifolin, apigenin, and tricin also correlated with bitterness. Notably, rhoifolin was more strongly correlated with bitterness than the previously known bitter compounds. Identifying the compounds that contribute to bitterness in citrus is a crucial first step for future breeding efforts aimed at reducing these compounds biosynthetically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
期刊最新文献
Effect of acid pretreatments with various acid types on gelling properties and identification characteristics of pigskin gelatin Grape stems as sources of tryptophan and selenium: Functional properties and antioxidant potential Effects of water flow treatment on muscle quality, nutrient composition and volatile compounds in common carp (Cyprinus carpio) Concentration and health risk assessment of melamine in commercial citrus juices Recent advances in detection techniques for vitamin analysis: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1