Exposure to complex mixtures of urban sediments containing Tyre and Road Wear Particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-02-16 DOI:10.1016/j.aquatox.2025.107292
Lorenzo Rigano , Markus Schmitz , Volker Linnemann , Martin Krauss , Henner Hollert , Markus Pfenninger
{"title":"Exposure to complex mixtures of urban sediments containing Tyre and Road Wear Particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius","authors":"Lorenzo Rigano ,&nbsp;Markus Schmitz ,&nbsp;Volker Linnemann ,&nbsp;Martin Krauss ,&nbsp;Henner Hollert ,&nbsp;Markus Pfenninger","doi":"10.1016/j.aquatox.2025.107292","DOIUrl":null,"url":null,"abstract":"<div><div>Tyre and road wear particles (TRWPs) are a significant yet often underestimated source of environmental pollution, contributing to the accumulation of microplastics and a complex mixture of contaminants in both terrestrial and aquatic ecosystems. Despite their prevalence, the long-term evolutionary effects of TRWPs, beyond their immediate toxicity, remain largely unknown. In this study, we assessed mutagenicity in the non-biting midge <em>Chironomus riparius</em>, upon exposure to urban sediment collected from a runoff sedimentation basin. To assess the extent of mutagenic effects over multiple generations, we combined the urban sediment exposure model with short-term mutation accumulation lines (MALs) and subsequent whole genome sequencing (WGS). The study was conducted over five generations, with urban sediment concentrations of 0.5 % and 10 %. Our results reveal that the exposure to urban sediment significantly increases mutation rates compared to control groups by 50 %, independent of concentration (0.5 % and 10 %). To infer potential causal processes, we conducted a comparative analysis using known mutational spectra from previous studies. This comparison showed that the mutation profiles induced by urban sediment clearly clustered with those caused by Benzo[a]Pyrene (BaP), a known Polycyclic Aromatic Hydrocarbon (PAH). A comprehensive chemical characterization of the sediment confirmed a considerable impact of road runoff and traffic-related contamination, including PAHs of primarily petrogenic origin. This suggests that PAH-like compounds present in urban sediments may play a significant role in the observed mutagenic effects. Our study shows that urban sediments influence mutation rates and alter mutational spectra in exposed organisms, potentially compromising genomic stability and shaping evolutionary trajectories. These genetic changes can have profound long-term effects on population dynamics and ecosystem health, underlining the importance of understanding the evolutionary consequences of environmental pollution. Additionally, we show that comparatively analysing of mutational spectra may provide valuable insights into mutational processes.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"281 ","pages":"Article 107292"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000578","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tyre and road wear particles (TRWPs) are a significant yet often underestimated source of environmental pollution, contributing to the accumulation of microplastics and a complex mixture of contaminants in both terrestrial and aquatic ecosystems. Despite their prevalence, the long-term evolutionary effects of TRWPs, beyond their immediate toxicity, remain largely unknown. In this study, we assessed mutagenicity in the non-biting midge Chironomus riparius, upon exposure to urban sediment collected from a runoff sedimentation basin. To assess the extent of mutagenic effects over multiple generations, we combined the urban sediment exposure model with short-term mutation accumulation lines (MALs) and subsequent whole genome sequencing (WGS). The study was conducted over five generations, with urban sediment concentrations of 0.5 % and 10 %. Our results reveal that the exposure to urban sediment significantly increases mutation rates compared to control groups by 50 %, independent of concentration (0.5 % and 10 %). To infer potential causal processes, we conducted a comparative analysis using known mutational spectra from previous studies. This comparison showed that the mutation profiles induced by urban sediment clearly clustered with those caused by Benzo[a]Pyrene (BaP), a known Polycyclic Aromatic Hydrocarbon (PAH). A comprehensive chemical characterization of the sediment confirmed a considerable impact of road runoff and traffic-related contamination, including PAHs of primarily petrogenic origin. This suggests that PAH-like compounds present in urban sediments may play a significant role in the observed mutagenic effects. Our study shows that urban sediments influence mutation rates and alter mutational spectra in exposed organisms, potentially compromising genomic stability and shaping evolutionary trajectories. These genetic changes can have profound long-term effects on population dynamics and ecosystem health, underlining the importance of understanding the evolutionary consequences of environmental pollution. Additionally, we show that comparatively analysing of mutational spectra may provide valuable insights into mutational processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Distinctive lipidomic responses induced by polystyrene micro- and nano-plastics in zebrafish liver cells Editorial Board Polar cod early life stage exposure to potential oil spills in the Arctic Combined toxicity of microplastic fibers and dibutyl phthalate on algae: Synergistic or antagonistic? Exposure to complex mixtures of urban sediments containing Tyre and Road Wear Particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1