Towards detailed combustion characteristics and linear stability analysis of premixed ammonia‒hydrogen‒air mixtures

Jun Cheng, Bo Zhang
{"title":"Towards detailed combustion characteristics and linear stability analysis of premixed ammonia‒hydrogen‒air mixtures","authors":"Jun Cheng,&nbsp;Bo Zhang","doi":"10.1016/j.jaecs.2025.100325","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, premixed ammonia‒hydrogen‒air mixtures at different pressures (50∼300 kPa), equivalence ratios (0.7∼1.5), and hydrogen concentrations (9∼50.00 %) were centrally ignited in a closed vessel, and the propagation of a spherical flame was recorded via a high-speed schlieren system. To accurately measure the laminar burning velocity, an AI model (RTMDet model) was trained on the schlieren images obtained in the experiments to mark the flame profile and calculate the flame area. The corresponding laminar combustion parameters were measured. Additionally, linear stability theory was applied to evaluate the critical conditions for the onset of flame instability. The results indicate that the hydrodynamic instability exhibits greater sensitivity to the initial pressure and equivalent ratio, whereas the molecular diffusion is remarkably sensitive to the hydrogen concentration in lean conditions. For the lean mixture, flame destabilization is enhanced by the thermal‒diffusion instability and curvature effect, whereas for the rich mixture, both the hydrodynamic instability and thermal‒diffusion instability is diminished, and flame stabilization is determined by the stretching effect. The critical Peclet number monotonically decreases as the equivalence ratio decreases and the hydrogen concentration increases. Hydrodynamic instability consistently promotes flame destabilization, whereas thermal-diffusion instability does not invariably contribute positively; for the lean mixtures, both the strain rate and curvature make the flame unstable, whereas they make the flame stable for the rich mixtures. The hydrogen concentration has a relatively limited effect on the strain rate and curvature. Additionally, the critical Karlovitz number indicates that flames in rich conditions are less susceptible to disturbances and instability. This study enhances the understanding of intrinsic instability mechanisms during flame propagation in ammonia‒hydrogen blended fuels, improves insights into their combustion characteristics, and provides a reference for optimizing combustion performance.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"21 ","pages":"Article 100325"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X2500007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, premixed ammonia‒hydrogen‒air mixtures at different pressures (50∼300 kPa), equivalence ratios (0.7∼1.5), and hydrogen concentrations (9∼50.00 %) were centrally ignited in a closed vessel, and the propagation of a spherical flame was recorded via a high-speed schlieren system. To accurately measure the laminar burning velocity, an AI model (RTMDet model) was trained on the schlieren images obtained in the experiments to mark the flame profile and calculate the flame area. The corresponding laminar combustion parameters were measured. Additionally, linear stability theory was applied to evaluate the critical conditions for the onset of flame instability. The results indicate that the hydrodynamic instability exhibits greater sensitivity to the initial pressure and equivalent ratio, whereas the molecular diffusion is remarkably sensitive to the hydrogen concentration in lean conditions. For the lean mixture, flame destabilization is enhanced by the thermal‒diffusion instability and curvature effect, whereas for the rich mixture, both the hydrodynamic instability and thermal‒diffusion instability is diminished, and flame stabilization is determined by the stretching effect. The critical Peclet number monotonically decreases as the equivalence ratio decreases and the hydrogen concentration increases. Hydrodynamic instability consistently promotes flame destabilization, whereas thermal-diffusion instability does not invariably contribute positively; for the lean mixtures, both the strain rate and curvature make the flame unstable, whereas they make the flame stable for the rich mixtures. The hydrogen concentration has a relatively limited effect on the strain rate and curvature. Additionally, the critical Karlovitz number indicates that flames in rich conditions are less susceptible to disturbances and instability. This study enhances the understanding of intrinsic instability mechanisms during flame propagation in ammonia‒hydrogen blended fuels, improves insights into their combustion characteristics, and provides a reference for optimizing combustion performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Towards detailed combustion characteristics and linear stability analysis of premixed ammonia‒hydrogen‒air mixtures bio-FLASHCHAIN® theory for rapid devolatilization of biomass. 10. Validations for agricultural residues Influence of surface cooling on the deposition behavior of combusting Iron particles Observing simultaneous low temperature heat release and deflagration in a spark ignition engine using formaldehyde planar laser induced fluorescence Comprehensive reevaluation of acetaldehyde chemistry - part I: Assessment of important kinetic parameters and the underlying uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1