Genome-wide identification, characterization and expression analysis of tubulin gene family in Populus deltoides.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-20 DOI:10.1186/s12870-025-06228-z
Jinyan Mao, Chang Jia, Jie Ling, Yingnan Chen
{"title":"Genome-wide identification, characterization and expression analysis of tubulin gene family in Populus deltoides.","authors":"Jinyan Mao, Chang Jia, Jie Ling, Yingnan Chen","doi":"10.1186/s12870-025-06228-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tubulin proteins, the main components of microtubules in all eukaryotes, are involved in numerous aspects of plant morphogenesis and adaptation to the environment. In woody plants, microtubules are closely associated with the orientation of cellulose microfibril deposition in the secondary xylem cells and thereby exert an influence on the strength and flexibility of wood. Three major types of tubulin proteins-α-, β- and γ-tubulin-are ubiquitously present in all flowering plants, with α- and β- tubulin serving as basic subunits of microtubules and γ-tubulin directing microtubule nucleation. Compared with herbaceous plants, information on tubulin gene family has been limited in forest trees. This study aimed to characterize the tubulin gene family in the model forest tree Populus deltoides.</p><p><strong>Result: </strong>Based on the whole genome sequence of P. deltoides, 25 PdTubulin genes were identified, including 6 PdTUAs, 17 PdTUBs, and 2 PdTUBGs were identified, with an uneven distribution across 14 chromosomes. Unlike Arabidopsis, which has only three pairs of tubulin paralogs, nearly all PdTubulin were paralogous duplicates, primarily generated by p-whole genome duplication (WGD), γ-WGD, or segmental duplication, indicating multiple rounds of gene family expansion. After the duplication events, the number of TUA genes in Populus was more strictly constrained compared to TUB genes. All paralogous and orthologous tubulin pairs have been under strong purifying selection. Expression analysis revealed that each PdTubulin gene was preferentially expressed in one of three organs: root, leaf, or stem. 5 PdTUB paralogs exhibited similar expression patterns, suggesting potential redundancy. Additionally, expression analysis in male and female floral buds across developmental stages indicated that different members might be involved in sex-specific processes.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"234"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06228-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tubulin proteins, the main components of microtubules in all eukaryotes, are involved in numerous aspects of plant morphogenesis and adaptation to the environment. In woody plants, microtubules are closely associated with the orientation of cellulose microfibril deposition in the secondary xylem cells and thereby exert an influence on the strength and flexibility of wood. Three major types of tubulin proteins-α-, β- and γ-tubulin-are ubiquitously present in all flowering plants, with α- and β- tubulin serving as basic subunits of microtubules and γ-tubulin directing microtubule nucleation. Compared with herbaceous plants, information on tubulin gene family has been limited in forest trees. This study aimed to characterize the tubulin gene family in the model forest tree Populus deltoides.

Result: Based on the whole genome sequence of P. deltoides, 25 PdTubulin genes were identified, including 6 PdTUAs, 17 PdTUBs, and 2 PdTUBGs were identified, with an uneven distribution across 14 chromosomes. Unlike Arabidopsis, which has only three pairs of tubulin paralogs, nearly all PdTubulin were paralogous duplicates, primarily generated by p-whole genome duplication (WGD), γ-WGD, or segmental duplication, indicating multiple rounds of gene family expansion. After the duplication events, the number of TUA genes in Populus was more strictly constrained compared to TUB genes. All paralogous and orthologous tubulin pairs have been under strong purifying selection. Expression analysis revealed that each PdTubulin gene was preferentially expressed in one of three organs: root, leaf, or stem. 5 PdTUB paralogs exhibited similar expression patterns, suggesting potential redundancy. Additionally, expression analysis in male and female floral buds across developmental stages indicated that different members might be involved in sex-specific processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Ca2+-dependent H2O2 response in roots and leaves of barley - a transcriptomic investigation. Compensatory growth and ion balance adaptation mechanisms of Salix matsudana Koidz under heterogeneous salinity stress. Genome-wide identification, characterization and expression analysis of tubulin gene family in Populus deltoides. Identification of key genes controlling anthocyanin biosynthesis in the fruits of a bud variety of Tarocco blood-orange. Mechanistic insights into the transcriptomic and metabolomic responses of Curcuma wenyujin under high phosphorus stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1