A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction.

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioTech Pub Date : 2025-02-14 DOI:10.3390/biotech14010010
Jorge L Arias-Arias, Laura Monturiol-Gross, Eugenia Corrales-Aguilar
{"title":"A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction.","authors":"Jorge L Arias-Arias, Laura Monturiol-Gross, Eugenia Corrales-Aguilar","doi":"10.3390/biotech14010010","DOIUrl":null,"url":null,"abstract":"<p><p>Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains a receptor binding domain (RBD) that recognizes the angiotensin-converting enzyme 2 receptor (ACE2) in host cells, allowing virus entry. The gold standard for determining SARS-CoV-2 neutralizing antibodies is the plaque reduction neutralization test (PRNT), which relies on live-virus replication performed exclusively in biosafety level 3 (BSL-3) laboratories. Here, we report the development of a surrogate live-cell imaging-based fluorescent SARS-CoV-2 neutralization assay, applicable to BSL-1 or BSL-2 laboratories, by antibody-mediated blockage of the interaction between recombinant RBD with overexpressed ACE2 receptor in a genetically modified HEK 293T stable cell line. Our approach was able to detect neutralizing antibodies both in COVID-19-positive human serum samples and polyclonal equine formulations against SARS-CoV-2. This new cell-based surrogate neutralization assay represents a virus-free fluorescence imaging alternative to the reported approaches, which can be used to detect antibody-neutralizing capabilities toward SARS-CoV-2. This assay could also be extrapolated in the future to other established and emergent viral agents.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains a receptor binding domain (RBD) that recognizes the angiotensin-converting enzyme 2 receptor (ACE2) in host cells, allowing virus entry. The gold standard for determining SARS-CoV-2 neutralizing antibodies is the plaque reduction neutralization test (PRNT), which relies on live-virus replication performed exclusively in biosafety level 3 (BSL-3) laboratories. Here, we report the development of a surrogate live-cell imaging-based fluorescent SARS-CoV-2 neutralization assay, applicable to BSL-1 or BSL-2 laboratories, by antibody-mediated blockage of the interaction between recombinant RBD with overexpressed ACE2 receptor in a genetically modified HEK 293T stable cell line. Our approach was able to detect neutralizing antibodies both in COVID-19-positive human serum samples and polyclonal equine formulations against SARS-CoV-2. This new cell-based surrogate neutralization assay represents a virus-free fluorescence imaging alternative to the reported approaches, which can be used to detect antibody-neutralizing capabilities toward SARS-CoV-2. This assay could also be extrapolated in the future to other established and emergent viral agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
期刊最新文献
A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction. Bioinformatics Tools for NGS-Based Identification of Single Nucleotide Variants and Large-Scale Rearrangements in Mitochondrial DNA. Recent Advances in Scaling up Bioelectrochemical Systems: A Review. The Use of Biologics for Targeting GPCRs in Metastatic Cancers. Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1