Artificial intelligent recognition for multiple supernumerary teeth in periapical radiographs based on faster R-CNN and YOLOv8.

IF 2.2 3区 医学 Q2 Dentistry Journal of Stomatology Oral and Maxillofacial Surgery Pub Date : 2025-02-19 DOI:10.1016/j.jormas.2025.102293
Jiajia Zheng, Hong Li, Quan Wen, Yuan Fu, Jiaqi Wu, Hu Chen
{"title":"Artificial intelligent recognition for multiple supernumerary teeth in periapical radiographs based on faster R-CNN and YOLOv8.","authors":"Jiajia Zheng, Hong Li, Quan Wen, Yuan Fu, Jiaqi Wu, Hu Chen","doi":"10.1016/j.jormas.2025.102293","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to compare the effectiveness of automated supernumerary tooth (ST) detection systems on periapical radiographs using Faster R-CNN and YOLOv8 with detection by 8 dental residents.</p><p><strong>Methods: </strong>This was a diagnostic accuracy study of 469 periapical radiographs (419 training vs. 50 test datasets). The primary predictor variables were detectors (dental residents/Faster R-CNN/YOLOv8). The main outcome variables included the diagnostic performance of the model's using precision, recall and intersection over union (IoU). Appropriate statistics were calculated.</p><p><strong>Results: </strong>In the test dataset, the precision of Faster R-CNN and YOLOv8 was 0.95 and 0.99, and their average precision was 0.90 and 0.97, respectively. A significant difference was observed between the two models in these metrics, with YOLOv8 outperforming Faster R-CNN in both precision and average precision (P<0.05). Both AI systems outperformed human subjects.</p><p><strong>Conclusions: </strong>Based on our findings, both YOLOv8 and Faster R-CNN are highly effective in the automated detection of ST in periapical radiographs and could, for example, assist humans in resource-limited situations.</p>","PeriodicalId":56038,"journal":{"name":"Journal of Stomatology Oral and Maxillofacial Surgery","volume":" ","pages":"102293"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stomatology Oral and Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jormas.2025.102293","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The aim of this study was to compare the effectiveness of automated supernumerary tooth (ST) detection systems on periapical radiographs using Faster R-CNN and YOLOv8 with detection by 8 dental residents.

Methods: This was a diagnostic accuracy study of 469 periapical radiographs (419 training vs. 50 test datasets). The primary predictor variables were detectors (dental residents/Faster R-CNN/YOLOv8). The main outcome variables included the diagnostic performance of the model's using precision, recall and intersection over union (IoU). Appropriate statistics were calculated.

Results: In the test dataset, the precision of Faster R-CNN and YOLOv8 was 0.95 and 0.99, and their average precision was 0.90 and 0.97, respectively. A significant difference was observed between the two models in these metrics, with YOLOv8 outperforming Faster R-CNN in both precision and average precision (P<0.05). Both AI systems outperformed human subjects.

Conclusions: Based on our findings, both YOLOv8 and Faster R-CNN are highly effective in the automated detection of ST in periapical radiographs and could, for example, assist humans in resource-limited situations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
305
期刊介绍: J Stomatol Oral Maxillofac Surg publishes research papers and techniques - (guest) editorials, original articles, reviews, technical notes, case reports, images, letters to the editor, guidelines - dedicated to enhancing surgical expertise in all fields relevant to oral and maxillofacial surgery: from plastic and reconstructive surgery of the face, oral surgery and medicine, … to dentofacial and maxillofacial orthopedics. Original articles include clinical or laboratory investigations and clinical or equipment reports. Reviews include narrative reviews, systematic reviews and meta-analyses. All manuscripts submitted to the journal are subjected to peer review by international experts, and must: Be written in excellent English, clear and easy to understand, precise and concise; Bring new, interesting, valid information - and improve clinical care or guide future research; Be solely the work of the author(s) stated; Not have been previously published elsewhere and not be under consideration by another journal; Be in accordance with the journal''s Guide for Authors'' instructions: manuscripts that fail to comply with these rules may be returned to the authors without being reviewed. Under no circumstances does the journal guarantee publication before the editorial board makes its final decision. The journal is indexed in the main international databases and is accessible worldwide through the ScienceDirect and ClinicalKey Platforms.
期刊最新文献
Comparison of accuracy between two different drill designs for static computer-assisted implant surgery: an in vitro study. Comment on: "Objectifying aesthetic outcomes following face transplantation - the AI research metrics model." Evaluation of the aesthetic and functional effectiveness of primary closed rhinoseptoplasty: a study of 189 cases. Traumatic brain injury in patients with facial fracture - a challenge for the clinician? CircPVT1 promotes periodontitis progression by regulating miR-24-3p/HIF1AN pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1