Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction.

Xirun Wei, Qiao Ning, Kuiyang Che, Zhaowei Liu, Hui Li, Shikai Guo
{"title":"Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction.","authors":"Xirun Wei, Qiao Ning, Kuiyang Che, Zhaowei Liu, Hui Li, Shikai Guo","doi":"10.1093/bioinformatics/btaf078","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>S-sulfhydration, a crucial post-translational protein modification, is pivotal in cellular recognition, signaling processes, and the development and progression of cardiovascular and neurological disorders, so identifying S-sulfhydration sites is crucial for studies in cell biology. Deep learning shows high efficiency and accuracy in identifying protein sites compared to traditional methods that often lack sensitivity and specificity in accurately locating nonsulfhydration sites. Therefore, we employ deep learning methods to tackle the challenge of pinpointing S-sulfhydration sites.</p><p><strong>Results: </strong>In this work, we introduce a deep learning approach called Sul-BertGRU, designed specifically for predicting S-sulfhydration sites in proteins, that integrates multi-directional gated recurrent unit (GRU) and BERT. First, Sul-BertGRU proposes an information entropy-enhanced BERT (IE-BERT) to preprocess protein sequences and extract initial features. Subsequently, confidence learning is employed to eliminate potential S-sulfhydration samples from the nonsulfhydration samples and select reliable negative samples. Then, considering the directional nature of the modification process, protein sequences are categorized into left, right, and full sequences centred on cysteines. We build a multi-directional GRU to enhance the extraction of directional sequence features and model the details of the enzymatic reaction involved in S-sulfhydration. Ultimately, we apply a parallel multi-head self-attention mechanism alongside a convolutional neural network (CNN) to deeply analyze sequence features that might be missed at a local level. Sul-BertGRU achieves sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, and area under the curve scores of 85.82%, 68.24%, 74.80%, 77.44%, 55.13%, and 77.03%, respectively. Sul-BertGRU demonstrates exceptional performance and proves to be a reliable method for predicting protein S-sulfhydration sites.</p><p><strong>Availability and implementation: </strong>The source code and data are available at https://github.com/Severus0902/Sul-BertGRU/.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: S-sulfhydration, a crucial post-translational protein modification, is pivotal in cellular recognition, signaling processes, and the development and progression of cardiovascular and neurological disorders, so identifying S-sulfhydration sites is crucial for studies in cell biology. Deep learning shows high efficiency and accuracy in identifying protein sites compared to traditional methods that often lack sensitivity and specificity in accurately locating nonsulfhydration sites. Therefore, we employ deep learning methods to tackle the challenge of pinpointing S-sulfhydration sites.

Results: In this work, we introduce a deep learning approach called Sul-BertGRU, designed specifically for predicting S-sulfhydration sites in proteins, that integrates multi-directional gated recurrent unit (GRU) and BERT. First, Sul-BertGRU proposes an information entropy-enhanced BERT (IE-BERT) to preprocess protein sequences and extract initial features. Subsequently, confidence learning is employed to eliminate potential S-sulfhydration samples from the nonsulfhydration samples and select reliable negative samples. Then, considering the directional nature of the modification process, protein sequences are categorized into left, right, and full sequences centred on cysteines. We build a multi-directional GRU to enhance the extraction of directional sequence features and model the details of the enzymatic reaction involved in S-sulfhydration. Ultimately, we apply a parallel multi-head self-attention mechanism alongside a convolutional neural network (CNN) to deeply analyze sequence features that might be missed at a local level. Sul-BertGRU achieves sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, and area under the curve scores of 85.82%, 68.24%, 74.80%, 77.44%, 55.13%, and 77.03%, respectively. Sul-BertGRU demonstrates exceptional performance and proves to be a reliable method for predicting protein S-sulfhydration sites.

Availability and implementation: The source code and data are available at https://github.com/Severus0902/Sul-BertGRU/.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EpicPred: Predicting phenotypes driven by epitope binding TCRs using attention-based multiple instance learning. Tribus: Semi-automated discovery of cell identities and phenotypes from multiplexed imaging and proteomic data. SimMS: A GPU-Accelerated Cosine Similarity implementation for Tandem Mass Spectrometry. Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction. HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1