Lukas Gerasimavicius , Sarah A. Teichmann , Joseph A. Marsh
{"title":"Leveraging protein structural information to improve variant effect prediction","authors":"Lukas Gerasimavicius , Sarah A. Teichmann , Joseph A. Marsh","doi":"10.1016/j.sbi.2025.103023","DOIUrl":null,"url":null,"abstract":"<div><div>Despite massive sequencing efforts, understanding the difference between human pathogenic and benign variants remains a challenge. Computational variant effect predictors (VEPs) have emerged as essential tools for assessing the impact of genetic variants, although their performance varies. Initially, sequence-based methods dominated the field, but recent advances, particularly in protein structure prediction technologies like AlphaFold, have led to an increased utilization of structural information by VEPs aimed at scoring human missense variants. This review highlights the progress in integrating structural information into VEPs, showcasing novel models such as AlphaMissense, PrimateAI-3D, and CPT-1 that demonstrate improved variant evaluation. Structural data offers more interpretability, especially for non-loss-of-function variants, and provides insights into complex variant interactions <em>in vivo</em>. As the field advances, utilizing biomolecular complex structures will be pivotal for future VEP development, with recent breakthroughs in protein-ligand and protein-nucleic acid complex prediction offering new avenues.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103023"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000417","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite massive sequencing efforts, understanding the difference between human pathogenic and benign variants remains a challenge. Computational variant effect predictors (VEPs) have emerged as essential tools for assessing the impact of genetic variants, although their performance varies. Initially, sequence-based methods dominated the field, but recent advances, particularly in protein structure prediction technologies like AlphaFold, have led to an increased utilization of structural information by VEPs aimed at scoring human missense variants. This review highlights the progress in integrating structural information into VEPs, showcasing novel models such as AlphaMissense, PrimateAI-3D, and CPT-1 that demonstrate improved variant evaluation. Structural data offers more interpretability, especially for non-loss-of-function variants, and provides insights into complex variant interactions in vivo. As the field advances, utilizing biomolecular complex structures will be pivotal for future VEP development, with recent breakthroughs in protein-ligand and protein-nucleic acid complex prediction offering new avenues.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation