Jaemin Sim , Dongwoo Kim , Bomin Kim , Jieun Choi , Juyong Lee
{"title":"Recent advances in AI-driven protein-ligand interaction predictions","authors":"Jaemin Sim , Dongwoo Kim , Bomin Kim , Jieun Choi , Juyong Lee","doi":"10.1016/j.sbi.2025.103020","DOIUrl":null,"url":null,"abstract":"<div><div>Structure-based drug discovery is a fundamental approach in modern drug development, leveraging computational models to predict protein-ligand interactions. AI-driven methodologies are significantly improving key aspects of the field, including ligand binding site prediction, protein-ligand binding pose estimation, scoring function development, and virtual screening. In this review, we summarize the recent AI-driven advances in various protein-ligand interaction prediction tasks. Traditional docking methods based on empirical scoring functions often lack accuracy, whereas AI models, including graph neural networks, mixture density networks, transformers, and diffusion models, have enhanced predictive performance. Ligand binding site prediction has been refined using geometric deep learning and sequence-based embeddings, aiding in the identification of potential druggable target sites. Binding pose prediction has evolved with sampling-based and regression-based models, as well as protein-ligand co-generation frameworks. AI-powered scoring functions now integrate physical constraints and deep learning techniques to improve binding affinity estimation, leading to more robust virtual screening strategies. Despite these advances, generalization across diverse protein-ligand pairs remains a challenge. As AI technologies continue to evolve, they are expected to revolutionize molecular docking and affinity prediction, increasing both the accuracy and efficiency of structure-based drug discovery.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103020"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000387","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Structure-based drug discovery is a fundamental approach in modern drug development, leveraging computational models to predict protein-ligand interactions. AI-driven methodologies are significantly improving key aspects of the field, including ligand binding site prediction, protein-ligand binding pose estimation, scoring function development, and virtual screening. In this review, we summarize the recent AI-driven advances in various protein-ligand interaction prediction tasks. Traditional docking methods based on empirical scoring functions often lack accuracy, whereas AI models, including graph neural networks, mixture density networks, transformers, and diffusion models, have enhanced predictive performance. Ligand binding site prediction has been refined using geometric deep learning and sequence-based embeddings, aiding in the identification of potential druggable target sites. Binding pose prediction has evolved with sampling-based and regression-based models, as well as protein-ligand co-generation frameworks. AI-powered scoring functions now integrate physical constraints and deep learning techniques to improve binding affinity estimation, leading to more robust virtual screening strategies. Despite these advances, generalization across diverse protein-ligand pairs remains a challenge. As AI technologies continue to evolve, they are expected to revolutionize molecular docking and affinity prediction, increasing both the accuracy and efficiency of structure-based drug discovery.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation