Biosynthesis of silver nanoparticles using Macrococcus caseolyticus strain AgD isolated from crude oil-contaminated water samples and their application in remediation of crude oil contamination in the Niger Delta aquatic environment

A.A. Ikhumetse , O.P. Abioye , A.S. Kovo , U.J.J. Ijah
{"title":"Biosynthesis of silver nanoparticles using Macrococcus caseolyticus strain AgD isolated from crude oil-contaminated water samples and their application in remediation of crude oil contamination in the Niger Delta aquatic environment","authors":"A.A. Ikhumetse ,&nbsp;O.P. Abioye ,&nbsp;A.S. Kovo ,&nbsp;U.J.J. Ijah","doi":"10.1016/j.enmm.2025.101057","DOIUrl":null,"url":null,"abstract":"<div><div>This study was carried out to synthesize bacterial silver nanoparticles (AgNPs) using <em>Macrococcus caseolyticus</em> strain AgD for remediation of crude oil contamination in aquatic environment. Characterization was done to ascertain the size, crystallinity, morphology and elemental composition of the bacterial AgNP, which was used for the removal of Total Petroleum Hydrocarbons (TPH) in the water samples. Response surface methodology (RSM) was used for design and optimization of the TPH response. The results indicated that TPH in some water samples were above permissible limits given by the World Health Organization. The results of 16S rDNA sequencing showed that the isolate is related to <em>Macrococcus caseolyticus.</em> The optical properties of AgNPs showed a peak at 425 nm while the XRD patterns revealed crystallinity with average crystallite size of 25.25204 ± 5.89 nm. The RSM showed a good fit for 2FI regression model for the AgNP as elucidated by the coefficient of determination with R<sup>2</sup> value of 0.9295. Run 1 (contact time 22.5 mins, stirring speed 1625 rpm, dosage 0.275 g, temperature 55 °C) obtained the highest TPH removal of 94.26 %, which was higher than the predicted (93.15 %) using the bacterial strain. The maximum predicted TPH removal was however 94.02 % at optimum factors of contact time (22.5 mins /100 mL), stirring speed (1620 rpm/100 mL), dosage (0.3206 g) and temperature (67.5 °C). The study showed that the bacterial strain was useful in the synthesis of AgNPs to enhance the efficient removal of contaminants in water samples, and that the model developed (2FI) using RSM technique was useful in predicting optimal TPH removal.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101057"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study was carried out to synthesize bacterial silver nanoparticles (AgNPs) using Macrococcus caseolyticus strain AgD for remediation of crude oil contamination in aquatic environment. Characterization was done to ascertain the size, crystallinity, morphology and elemental composition of the bacterial AgNP, which was used for the removal of Total Petroleum Hydrocarbons (TPH) in the water samples. Response surface methodology (RSM) was used for design and optimization of the TPH response. The results indicated that TPH in some water samples were above permissible limits given by the World Health Organization. The results of 16S rDNA sequencing showed that the isolate is related to Macrococcus caseolyticus. The optical properties of AgNPs showed a peak at 425 nm while the XRD patterns revealed crystallinity with average crystallite size of 25.25204 ± 5.89 nm. The RSM showed a good fit for 2FI regression model for the AgNP as elucidated by the coefficient of determination with R2 value of 0.9295. Run 1 (contact time 22.5 mins, stirring speed 1625 rpm, dosage 0.275 g, temperature 55 °C) obtained the highest TPH removal of 94.26 %, which was higher than the predicted (93.15 %) using the bacterial strain. The maximum predicted TPH removal was however 94.02 % at optimum factors of contact time (22.5 mins /100 mL), stirring speed (1620 rpm/100 mL), dosage (0.3206 g) and temperature (67.5 °C). The study showed that the bacterial strain was useful in the synthesis of AgNPs to enhance the efficient removal of contaminants in water samples, and that the model developed (2FI) using RSM technique was useful in predicting optimal TPH removal.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
Analysis of pathogenic microorganisms in hospital effluents: A statistical approach to understanding antibiotic resistance and environmental health risks Biosynthesis of silver nanoparticles using Macrococcus caseolyticus strain AgD isolated from crude oil-contaminated water samples and their application in remediation of crude oil contamination in the Niger Delta aquatic environment Impact of traffic and other sources on heavy metal pollution of urban soils (Lublin, Poland) The hidden threat of microplastics in urban freshwater ecosystem: A comprehensive review The prospect of using polyvinyl chloride with -n-hydroxyl amine, a metal binding agent, to adsorb uranium from its aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1