Haoyang Song , Yibo Liang , Junchi Ma , Yang Cai , Yibo Wang , Ximan Wang , Hongjia Zhang , Changsheng Liu , Yongquan Qing
{"title":"Superhydrophobic carbon nanodot-tube/MXene/microfiber coupling textile for highly reliable amphibious human motion monitoring","authors":"Haoyang Song , Yibo Liang , Junchi Ma , Yang Cai , Yibo Wang , Ximan Wang , Hongjia Zhang , Changsheng Liu , Yongquan Qing","doi":"10.1016/j.compositesb.2025.112309","DOIUrl":null,"url":null,"abstract":"<div><div>Superhydrophobic flexible strain sensors exhibit significant potential for detecting human behavior in amphibious environments. However, stable monitoring of amphibious human motion remains a notable challenge, as electronic devices exposed to wet environments, particularly corrosive liquids, can lose their effectiveness due to damage to conductive networks. Herein, we report the design of a superhydrophobic carbon nanodot-tube/MXene/microfiber coupled textile (SCNCT) by dip-coating a 2D conductive adhesive layer, followed by spray-coating a suspension of fluorinated 0D/1D conductive networks onto substrates. Such material retains excellent superhydrophobicity even after mechanical damages and soaking in 0.1 M strong acid/alkali and 3.5 wt% saline for 3 h. After enduring various tests, including ultrasonic vibrations, continuous solid impacts, extreme thermal conditions, and applications involving multiple limb deformations, the SCNCT still remains capable of stably outputting signals. Importantly, the SCNCT, equipped with a multi-dimensional interlocking structure, reliably monitors the full-range human behaviors across various conditions—wet environments, underwater, and even in simulated seawater. This work offers a simple and practical solution for developing highly reliable strain sensors with a response that is stable in extremely wet environments.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"297 ","pages":"Article 112309"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Superhydrophobic flexible strain sensors exhibit significant potential for detecting human behavior in amphibious environments. However, stable monitoring of amphibious human motion remains a notable challenge, as electronic devices exposed to wet environments, particularly corrosive liquids, can lose their effectiveness due to damage to conductive networks. Herein, we report the design of a superhydrophobic carbon nanodot-tube/MXene/microfiber coupled textile (SCNCT) by dip-coating a 2D conductive adhesive layer, followed by spray-coating a suspension of fluorinated 0D/1D conductive networks onto substrates. Such material retains excellent superhydrophobicity even after mechanical damages and soaking in 0.1 M strong acid/alkali and 3.5 wt% saline for 3 h. After enduring various tests, including ultrasonic vibrations, continuous solid impacts, extreme thermal conditions, and applications involving multiple limb deformations, the SCNCT still remains capable of stably outputting signals. Importantly, the SCNCT, equipped with a multi-dimensional interlocking structure, reliably monitors the full-range human behaviors across various conditions—wet environments, underwater, and even in simulated seawater. This work offers a simple and practical solution for developing highly reliable strain sensors with a response that is stable in extremely wet environments.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.