Emerging mycotoxin moniliformin induces renal tubular necrosis after oral exposure in mice.

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Chemical Toxicology Pub Date : 2025-02-19 DOI:10.1016/j.fct.2025.115336
Ryota Ojiro, Xinyu Zou, Hiroshi Yamagata, Yuri Ebizuka, Mio Kobayashi, Tetsuhito Kigata, Qian Tang, Toshinori Yoshida, Tomoya Yoshinari, Makoto Shibutani
{"title":"Emerging mycotoxin moniliformin induces renal tubular necrosis after oral exposure in mice.","authors":"Ryota Ojiro, Xinyu Zou, Hiroshi Yamagata, Yuri Ebizuka, Mio Kobayashi, Tetsuhito Kigata, Qian Tang, Toshinori Yoshida, Tomoya Yoshinari, Makoto Shibutani","doi":"10.1016/j.fct.2025.115336","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicological information on moniliformin (MON), an emerging mycotoxin, is limited. This study examined the acute and 28-day toxicity of orally administered MON in male ICR mice. Regarding the acute toxicity, among single oral doses of 0, 20, 40, and 80 mg/kg body weight (BW), MON caused proximal tubular necrosis in the kidneys at ≥ 40 mg/kg BW, and the lethal dose 50 value was estimated as 68.1 mg/kg BW. Regarding the 28-day toxicity, among oral doses of 0, 10, 20, and 40 mg/kg BW/day, MON increased absolute heart weight at 40 mg/kg BW, but histopathological changes were not evident in the heart. In contrast, 40 mg/kg BW MON induced centrilobular liver cell hypertrophy accompanied by increased absolute liver weight. Moreover, MON dose-dependently increased the absolute kidney weight at ≥ 20 mg/kg BW and increased the incidence of renal tubular regeneration at 40 mg/kg BW. RNA sequencing analysis in the renal cortex after a single dose of 40 mg/kg BW MON revealed upregulation of metabolic response-related genes, such as Cyp3a13, Cyp26b1, and Cyp4f15, and oxidative stress-related Gpx7. These results suggest that MON targets the kidneys in mice. Orally ingested MON may be metabolized in the kidneys as well as in the liver, and active intermediates or reactive oxygen species may induce renal tubular toxicity, causing proximal tubular necrosis. Based on kidney changes, the no-observed-adverse-effect-level of MON in the 28-day oral toxicity study of male mice was determined to be 10 mg/kg BW/day.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115336"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2025.115336","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxicological information on moniliformin (MON), an emerging mycotoxin, is limited. This study examined the acute and 28-day toxicity of orally administered MON in male ICR mice. Regarding the acute toxicity, among single oral doses of 0, 20, 40, and 80 mg/kg body weight (BW), MON caused proximal tubular necrosis in the kidneys at ≥ 40 mg/kg BW, and the lethal dose 50 value was estimated as 68.1 mg/kg BW. Regarding the 28-day toxicity, among oral doses of 0, 10, 20, and 40 mg/kg BW/day, MON increased absolute heart weight at 40 mg/kg BW, but histopathological changes were not evident in the heart. In contrast, 40 mg/kg BW MON induced centrilobular liver cell hypertrophy accompanied by increased absolute liver weight. Moreover, MON dose-dependently increased the absolute kidney weight at ≥ 20 mg/kg BW and increased the incidence of renal tubular regeneration at 40 mg/kg BW. RNA sequencing analysis in the renal cortex after a single dose of 40 mg/kg BW MON revealed upregulation of metabolic response-related genes, such as Cyp3a13, Cyp26b1, and Cyp4f15, and oxidative stress-related Gpx7. These results suggest that MON targets the kidneys in mice. Orally ingested MON may be metabolized in the kidneys as well as in the liver, and active intermediates or reactive oxygen species may induce renal tubular toxicity, causing proximal tubular necrosis. Based on kidney changes, the no-observed-adverse-effect-level of MON in the 28-day oral toxicity study of male mice was determined to be 10 mg/kg BW/day.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠口服新出现的霉菌毒素 Moniliformin 会诱发肾小管坏死。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
期刊最新文献
Editorial Board Arsenolipid-Induced Reproductive Toxicity in Caenorhabditis elegans: Elucidating the Mechanism through the HUS-1-CEP-1-EGL-1-CED-9-CED-4-CED-3 Signaling Pathway. BHPF inhibits early embryonic development in mice by disrupting maternal-to-zygotic transition and mitochondrial function. Overexpression of Methionine Sulfoxide Reductase A Alleviates Acrylamide-Induced Neurotoxicity by Mitigating Lipid Peroxidation and Mitochondria-Dependent Apoptosis In Vivo and In Vitro. Update to RIFM fragrance ingredient safety assessment, 3-phenylbutanal, CAS Registry Number 16251-77-7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1