Overexpression of Methionine Sulfoxide Reductase A Alleviates Acrylamide-Induced Neurotoxicity by Mitigating Lipid Peroxidation and Mitochondria-Dependent Apoptosis In Vivo and In Vitro.
{"title":"Overexpression of Methionine Sulfoxide Reductase A Alleviates Acrylamide-Induced Neurotoxicity by Mitigating Lipid Peroxidation and Mitochondria-Dependent Apoptosis In Vivo and In Vitro.","authors":"Yuanyuan Li, Tingting Zhang, Qiaoxing Mou, Sirui Liu, Wanxing Wu, Simei Wang, Xiaoyu Yan, Jie Liang, Mengfan Yan, Weiying Liu, Xiaoqi Pan","doi":"10.1016/j.fct.2025.115339","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylamide (ACR) has garnered significant attention due to its neurotoxic effects. Oxidative stress, a key mechanism underlying ACR-induced neurotoxicity, is well-documented. Methionine sulfoxide reductase A (MsrA) plays a pivotal role in protecting various types of cells, including neuronal cells, against the effects of oxidative stress. However, the role of MsrA in ACR-induced neurotoxicity remains poorly understood. This study explored the effects of MsrA on ACR-induced neurotoxicity. After administering ACR by gavage at doses of 20 mg/kg, 30 mg/kg, and 40 mg/kg for 21 days, rats exhibited motor impairment and structural damage in the cerebellum. Both in vivo and in vitro, ACR dose-dependently reduced MsrA level, accompanied by increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, c-Jun N-terminal kinase (JNK) phosphorylation, and mitochondria-dependent neuronal apoptosis. To further ascertain the role of MsrA in mitigating ACR-induced neuronal apoptosis, SH-SY5Y cell line overexpressing MsrA was constructed. Overexpression of MsrA attenuated the ACR-induced increases in ROS and MDA levels. Additionally, alterations in mitochondrial membrane potential (MMP), mitochondrial ultrastructure, JNK phosphorylation, and mitochondria-dependent apoptosis caused by ACR were reversed in the cells overexpressing MsrA. These findings offer significant insights into the protective role of MsrA against ACR-induced neurotoxicity.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115339"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2025.115339","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acrylamide (ACR) has garnered significant attention due to its neurotoxic effects. Oxidative stress, a key mechanism underlying ACR-induced neurotoxicity, is well-documented. Methionine sulfoxide reductase A (MsrA) plays a pivotal role in protecting various types of cells, including neuronal cells, against the effects of oxidative stress. However, the role of MsrA in ACR-induced neurotoxicity remains poorly understood. This study explored the effects of MsrA on ACR-induced neurotoxicity. After administering ACR by gavage at doses of 20 mg/kg, 30 mg/kg, and 40 mg/kg for 21 days, rats exhibited motor impairment and structural damage in the cerebellum. Both in vivo and in vitro, ACR dose-dependently reduced MsrA level, accompanied by increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, c-Jun N-terminal kinase (JNK) phosphorylation, and mitochondria-dependent neuronal apoptosis. To further ascertain the role of MsrA in mitigating ACR-induced neuronal apoptosis, SH-SY5Y cell line overexpressing MsrA was constructed. Overexpression of MsrA attenuated the ACR-induced increases in ROS and MDA levels. Additionally, alterations in mitochondrial membrane potential (MMP), mitochondrial ultrastructure, JNK phosphorylation, and mitochondria-dependent apoptosis caused by ACR were reversed in the cells overexpressing MsrA. These findings offer significant insights into the protective role of MsrA against ACR-induced neurotoxicity.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.