Decoding the synergistic mechanisms of functional microbial agents on the microecology and metabolic function in medium-high temperature Daqu starter for enhancing aromatic flavor

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry: X Pub Date : 2025-02-01 DOI:10.1016/j.fochx.2025.102304
Min Zhu , Zhao Deng , Mingyao Wang , Yu Tie , Wenxue Zhang , Zhengyun Wu , Zhengfu Pan , Guorong Luo , Renfu Wu , Jianliang Qin , Katsuya Gomi
{"title":"Decoding the synergistic mechanisms of functional microbial agents on the microecology and metabolic function in medium-high temperature Daqu starter for enhancing aromatic flavor","authors":"Min Zhu ,&nbsp;Zhao Deng ,&nbsp;Mingyao Wang ,&nbsp;Yu Tie ,&nbsp;Wenxue Zhang ,&nbsp;Zhengyun Wu ,&nbsp;Zhengfu Pan ,&nbsp;Guorong Luo ,&nbsp;Renfu Wu ,&nbsp;Jianliang Qin ,&nbsp;Katsuya Gomi","doi":"10.1016/j.fochx.2025.102304","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing functional <em>Daqu</em> has emerged as an effective strategy to enhance aromatic compounds in Chinese Baijiu. However, research on how functional microbial agents enhance aromatics-producing enzymes and maintain community homeostasis in functional <em>Daqu</em> remains limited. Herein, we reveal the mechanisms of functional microbial agents for enhancing aromatic compounds through reducing interspecies interactions and simplifying the ecological network to drive the aggregated distribution of lactic acid bacteria, and inducing a localized microecology comprised of <em>Aspergillus</em>, <em>Pichia</em>, <em>Millerozyma</em>, <em>Pseudomonas</em>, <em>Paenibacillus</em>, and <em>Rhizomucor</em>, effectively boosting the expression of key enzymes for aromatic synthesis. Functional microbial agents significantly enhance the key enzyme activities (515.9 nmol/h/g and 6.1 U/g for PrAO and ALDH) compared with traditional <em>Daqu</em> (198.6 nmol/h/g and 0.9 U/g), improving the content of aromatic compounds with an increase of 185.57 %. These results revealed the mechanisms of functional <em>Daqu</em> in aromatic compounds production, thus contributing to improve <em>Baijiu</em> quality.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"26 ","pages":"Article 102304"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525001518","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing functional Daqu has emerged as an effective strategy to enhance aromatic compounds in Chinese Baijiu. However, research on how functional microbial agents enhance aromatics-producing enzymes and maintain community homeostasis in functional Daqu remains limited. Herein, we reveal the mechanisms of functional microbial agents for enhancing aromatic compounds through reducing interspecies interactions and simplifying the ecological network to drive the aggregated distribution of lactic acid bacteria, and inducing a localized microecology comprised of Aspergillus, Pichia, Millerozyma, Pseudomonas, Paenibacillus, and Rhizomucor, effectively boosting the expression of key enzymes for aromatic synthesis. Functional microbial agents significantly enhance the key enzyme activities (515.9 nmol/h/g and 6.1 U/g for PrAO and ALDH) compared with traditional Daqu (198.6 nmol/h/g and 0.9 U/g), improving the content of aromatic compounds with an increase of 185.57 %. These results revealed the mechanisms of functional Daqu in aromatic compounds production, thus contributing to improve Baijiu quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
期刊最新文献
Effect of acid pretreatments with various acid types on gelling properties and identification characteristics of pigskin gelatin Grape stems as sources of tryptophan and selenium: Functional properties and antioxidant potential Effects of water flow treatment on muscle quality, nutrient composition and volatile compounds in common carp (Cyprinus carpio) Concentration and health risk assessment of melamine in commercial citrus juices Recent advances in detection techniques for vitamin analysis: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1