The capsid protein p72 specific mAb and the corresponding novel epitope based ELISAs for detection of ASFV infection

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY Veterinary microbiology Pub Date : 2025-02-19 DOI:10.1016/j.vetmic.2025.110437
Jiajia Zhang , Ziyan Sun , Shaohua Sun , Kaili Zhang , Dafu Deng , Ping He , Pingping Zhang , Nengwen Xia , Sen Jiang , Wanglong Zheng , Francois Meurens , Jianzhong Zhu
{"title":"The capsid protein p72 specific mAb and the corresponding novel epitope based ELISAs for detection of ASFV infection","authors":"Jiajia Zhang ,&nbsp;Ziyan Sun ,&nbsp;Shaohua Sun ,&nbsp;Kaili Zhang ,&nbsp;Dafu Deng ,&nbsp;Ping He ,&nbsp;Pingping Zhang ,&nbsp;Nengwen Xia ,&nbsp;Sen Jiang ,&nbsp;Wanglong Zheng ,&nbsp;Francois Meurens ,&nbsp;Jianzhong Zhu","doi":"10.1016/j.vetmic.2025.110437","DOIUrl":null,"url":null,"abstract":"<div><div>The African Swine Fever Virus (ASFV) poses a significant threat to the global pig farming industry. The major icosahedral capsid protein p72 plays a key role in the assembly of virus particles and infection process. As one major antigen of ASFV, p72 has been widely utilized as a marker for diagnosing infection. In this study, five p72 specific monoclonal antibodies (mAbs) were generated through the immunization of mice followed by cell fusion. Among the five hybridomas, clones 1B7, 2F3, 5D3, and 5D4 recognized a novel epitope of <sup>101</sup>FHDMVGHHILGACH<sup>114</sup>, while clone 1D7 recognized a new epitope, <sup>239</sup>GPLLCNIHDL<sup>248</sup>. Both linear epitopes were found to be highly conserved across all genotypes I and II ASFV isolates, with the first located at the pseudo hexagonal base of the p72 trimer and the latter situated at the FG<sub>N</sub> insertion loop. The antigenic epitopes were capable of competing with the binding of corresponding mAbs in p72 protein based ELISA, and peptide based ELISA effectively detected ASFV antibodies in clinical samples. Furthermore, we developed and optimized a sandwich ELISA using the mAb 2F3 for efficient detection of ASFV p72 antigen. Our study not only provides valuable tools for assessing p72 function assay, but also lays the foundation for serological diagnosis, prevention and control of ASF.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"303 ","pages":"Article 110437"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000720","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The African Swine Fever Virus (ASFV) poses a significant threat to the global pig farming industry. The major icosahedral capsid protein p72 plays a key role in the assembly of virus particles and infection process. As one major antigen of ASFV, p72 has been widely utilized as a marker for diagnosing infection. In this study, five p72 specific monoclonal antibodies (mAbs) were generated through the immunization of mice followed by cell fusion. Among the five hybridomas, clones 1B7, 2F3, 5D3, and 5D4 recognized a novel epitope of 101FHDMVGHHILGACH114, while clone 1D7 recognized a new epitope, 239GPLLCNIHDL248. Both linear epitopes were found to be highly conserved across all genotypes I and II ASFV isolates, with the first located at the pseudo hexagonal base of the p72 trimer and the latter situated at the FGN insertion loop. The antigenic epitopes were capable of competing with the binding of corresponding mAbs in p72 protein based ELISA, and peptide based ELISA effectively detected ASFV antibodies in clinical samples. Furthermore, we developed and optimized a sandwich ELISA using the mAb 2F3 for efficient detection of ASFV p72 antigen. Our study not only provides valuable tools for assessing p72 function assay, but also lays the foundation for serological diagnosis, prevention and control of ASF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Lung Collapse during Mini-Thoracotomy Reduces Penetration of Cefuroxime to the Tissue: Interstitial Microdialysis Study in Animal Models.
IF 2 4区 医学Surgical infectionsPub Date : 2021-04-01 DOI: 10.1089/sur.2019.273
Martin Děrgel, Martin Voborník, Marek Pojar, Mikita Karalko, Jan Gofus, Věra Radochová, Šárka Studená, Jana Maláková, Zdeněk Turek, Jaroslav Chládek, Jiří Manďák
Weight-based cefuroxime dosing provides comparable orthopedic target tissue concentrations between weight groups – a microdialysis porcine study
IF 2.8 4区 医学ApmisPub Date : 2021-12-04 DOI: 10.1111/apm.13198
Sara Kousgaard Tøstesen, Pelle Hanberg, Mats Bue, Theis Muncholm Thillemann, Thomas Falstie-Jensen, Mikkel Tøttrup, Martin Bruun Knudsen, Anne Vibeke Schmedes, Maiken Stilling
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
期刊最新文献
Multi-epitope vaccines Xlc and Ddc against Glaesserella parasuis infection in mice Retrospective investigation of 43 necropsy cases of Tyzzer disease in foals and partial genome sequence of Clostridium piliforme by shotgun metagenomics Genomic study of Salmonella ser. Enteritidis from poultry farms in Argentina: Epidemiology and antimicrobial resistance in twenty strains The underlying mechanism of Porcine Teschovirus 2 3Cpro antagonizing the NLRP3 inflammasome SodC is responsible for oxidative stress resistance and pathogenicity of Corynebacterium pseudotuberculosis, and the sodC-deleted C. pseudotuberculosis vaccine provides immunity in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1