Two non-convex optimization approaches for joint transmit waveform and receive filter design

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2025-02-22 DOI:10.1016/j.sigpro.2025.109952
Mohammad Mahdi Omati, Seyed Mohammad Karbasi, Arash Amini
{"title":"Two non-convex optimization approaches for joint transmit waveform and receive filter design","authors":"Mohammad Mahdi Omati,&nbsp;Seyed Mohammad Karbasi,&nbsp;Arash Amini","doi":"10.1016/j.sigpro.2025.109952","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents two innovative approaches for jointly optimizing the radar transmit waveform and receive filter to improve the signal-to-interference-plus-noise ratio (SINR) for extended targets under signal-dependent interference. We operate under the assumption of incomplete information about the target impulse response (TIR), which is confined within a predefined uncertainty set. To ensure robustness against this uncertainty, we frame the problem as a max–min (worst-case) optimization. Additionally, we impose a constant modulus constraint (because it has the lowest possible peak-to-average power ratio (PAPR)) on the transmit waveform to guarantee our system operates close to saturation. To solve this, both approaches use a sequential optimization procedure, alternating between the transmit waveform and receive filter subproblems. The first approach employs the ADMM, decomposing each subproblem into a semi-definite programming (SDP) problem and a least squares problem with a fixed rank constraint, solvable via SVD. The second approach tackles the problem over two Riemannian manifolds: the sphere manifold for the receive filter and the product of complex circles for the transmit signal. By applying manifold optimization, the constrained problem is transformed into an unconstrained one within a restricted search space. The max–min problem is reformulated as a minimization problem, yielding a closed-form expression involving log-sum-exp. This is solved using the Riemannian conjugate gradient descent (RCG) algorithm, which builds on Euclidean conjugate gradient descent and utilizes the manifold’s properties, such as the Riemannian metric and retraction. Our numerical results demonstrate the robustness and effectiveness of these methods across various uncertainty sets and target types.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"233 ","pages":"Article 109952"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000660","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents two innovative approaches for jointly optimizing the radar transmit waveform and receive filter to improve the signal-to-interference-plus-noise ratio (SINR) for extended targets under signal-dependent interference. We operate under the assumption of incomplete information about the target impulse response (TIR), which is confined within a predefined uncertainty set. To ensure robustness against this uncertainty, we frame the problem as a max–min (worst-case) optimization. Additionally, we impose a constant modulus constraint (because it has the lowest possible peak-to-average power ratio (PAPR)) on the transmit waveform to guarantee our system operates close to saturation. To solve this, both approaches use a sequential optimization procedure, alternating between the transmit waveform and receive filter subproblems. The first approach employs the ADMM, decomposing each subproblem into a semi-definite programming (SDP) problem and a least squares problem with a fixed rank constraint, solvable via SVD. The second approach tackles the problem over two Riemannian manifolds: the sphere manifold for the receive filter and the product of complex circles for the transmit signal. By applying manifold optimization, the constrained problem is transformed into an unconstrained one within a restricted search space. The max–min problem is reformulated as a minimization problem, yielding a closed-form expression involving log-sum-exp. This is solved using the Riemannian conjugate gradient descent (RCG) algorithm, which builds on Euclidean conjugate gradient descent and utilizes the manifold’s properties, such as the Riemannian metric and retraction. Our numerical results demonstrate the robustness and effectiveness of these methods across various uncertainty sets and target types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Editorial Board Multi-focus image fusion based on visual depth and fractional-order differentiation operators embedding convolution norm Two-stage reversible data hiding in encrypted domain with public key embedding mechanism Analog filters based on the Mittag-Leffler functions Two non-convex optimization approaches for joint transmit waveform and receive filter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1