Oxygen-Tolerant ATRP Depolymerization Enabled by an External Radical Source.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-02-22 DOI:10.1002/marc.202401067
Stella Afroditi Mountaki, Richard Whitfield, Athina Anastasaki
{"title":"Oxygen-Tolerant ATRP Depolymerization Enabled by an External Radical Source.","authors":"Stella Afroditi Mountaki, Richard Whitfield, Athina Anastasaki","doi":"10.1002/marc.202401067","DOIUrl":null,"url":null,"abstract":"<p><p>Although the chemical recycling of polymers synthesized by controlled radical polymerization enables the recovery of pristine monomer at low temperatures, it operates efficiently under strictly anaerobic conditions. Instead, oxygen-tolerant depolymerizations are scarce, and are either restricted to the use of a boiling co-solvent or are performed in closed vessels, often suffering from low conversions. Here, an open-vessel, oxygen-tolerant depolymerization of atom transfer radical polymerization (ATRP)-synthesized polymers is introduced, leading to high percentages of monomer regeneration (>90% depolymerization efficiency). Dissolved oxygen is eliminated by either utilizing high catalyst loadings, or lower catalyst loadings combined with a radical initiator. Notably, the methodology is compatible with various solvents (i.e., anisole, 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), etc.) and a range of commercially available ligands including tris 2-(dimethylamino)ethylamine (Me<sub>6</sub>TREN) and tris(2-pyridylmethyl)amine (TPMA), as well as more inexpensive alternatives such as tris(2-aminoethyl)amine (TREN) and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA).</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401067"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401067","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although the chemical recycling of polymers synthesized by controlled radical polymerization enables the recovery of pristine monomer at low temperatures, it operates efficiently under strictly anaerobic conditions. Instead, oxygen-tolerant depolymerizations are scarce, and are either restricted to the use of a boiling co-solvent or are performed in closed vessels, often suffering from low conversions. Here, an open-vessel, oxygen-tolerant depolymerization of atom transfer radical polymerization (ATRP)-synthesized polymers is introduced, leading to high percentages of monomer regeneration (>90% depolymerization efficiency). Dissolved oxygen is eliminated by either utilizing high catalyst loadings, or lower catalyst loadings combined with a radical initiator. Notably, the methodology is compatible with various solvents (i.e., anisole, 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), etc.) and a range of commercially available ligands including tris 2-(dimethylamino)ethylamine (Me6TREN) and tris(2-pyridylmethyl)amine (TPMA), as well as more inexpensive alternatives such as tris(2-aminoethyl)amine (TREN) and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Transparent and Recyclable Ionogels Enabled by Dynamic Networks Containing Poly(Thioctic Acid) for Flexible Sensors. Lanthanide Coordinated Poly(Thioctic Acid) Materials with Enhanced Strength and Room Temperature Self-Healing Performance. Sustainable Production of Ion-Conductive Polyelectrolytes by Ultrafast Photopolymerization of Lithium, Sodium, and Potassium Salts/Amide-Based Deep Eutectic Monomers. Synthesis and Self-Assembly of Pore-Forming Three-Arm Amphiphilic Block Copolymers. Recyclable Supramolecular Nanofibrous Composite Membranes for Efficient Air Filtration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1