Ultrasonicated Atlantic herring side streams as source of multifunctional bioactive and bioavailable peptides.

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY NPJ Science of Food Pub Date : 2025-02-22 DOI:10.1038/s41538-025-00388-w
Gilda Aiello, Janna Cropotova, Kristine Kvangarsnes, Lorenza d'Adduzio, Melissa Fanzaga, Carlotta Bollati, Giovanna Boschin, Gabriella Roda, Carmen Lammi
{"title":"Ultrasonicated Atlantic herring side streams as source of multifunctional bioactive and bioavailable peptides.","authors":"Gilda Aiello, Janna Cropotova, Kristine Kvangarsnes, Lorenza d'Adduzio, Melissa Fanzaga, Carlotta Bollati, Giovanna Boschin, Gabriella Roda, Carmen Lammi","doi":"10.1038/s41538-025-00388-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates the effectiveness of ultrasonication, as a pre-treatment technology, coupled to enzymatic hydrolysis of herring side streams, yielding multifunctional peptide mixtures with antioxidant, hypotensive (ACE inhibitory activity), and hypoglycemic (DPP-IV inhibitory and GLP-1 enhancer activity) properties. The ultrasound pre-treatment modulates the biological activity of the hydrolysates, enhancing certain bioactive properties (antioxidant, ACE inhibitory, and GLP-1 enhancer activities, respectively) while reducing others (DPP-IV inhibitory activity). The study also highlights the importance of simulating gastrointestinal digestion and using Caco-2 cells to assess the bioaccessibility, intestinal bioavailability, and metabolic resistance of herring peptides. These findings support the use of ultrasonication and enzymatic hydrolysis in obtaining multifunctional bioactive peptide mixture for the prevention of metabolic syndrome. Results clearly suggest that this approach represent sustainable solutions in food science and technology, since it allowed us to obtain a bioactive mixture of peptides starting from fish by-products pre-treated with green methodologies.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"25"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00388-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the effectiveness of ultrasonication, as a pre-treatment technology, coupled to enzymatic hydrolysis of herring side streams, yielding multifunctional peptide mixtures with antioxidant, hypotensive (ACE inhibitory activity), and hypoglycemic (DPP-IV inhibitory and GLP-1 enhancer activity) properties. The ultrasound pre-treatment modulates the biological activity of the hydrolysates, enhancing certain bioactive properties (antioxidant, ACE inhibitory, and GLP-1 enhancer activities, respectively) while reducing others (DPP-IV inhibitory activity). The study also highlights the importance of simulating gastrointestinal digestion and using Caco-2 cells to assess the bioaccessibility, intestinal bioavailability, and metabolic resistance of herring peptides. These findings support the use of ultrasonication and enzymatic hydrolysis in obtaining multifunctional bioactive peptide mixture for the prevention of metabolic syndrome. Results clearly suggest that this approach represent sustainable solutions in food science and technology, since it allowed us to obtain a bioactive mixture of peptides starting from fish by-products pre-treated with green methodologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声处理的大西洋鲱鱼侧流是多功能生物活性肽和生物可用肽的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Science of Food
NPJ Science of Food FOOD SCIENCE & TECHNOLOGY-
CiteScore
7.50
自引率
1.60%
发文量
53
期刊介绍: npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.
期刊最新文献
The physiological characteristics and applications of sialic acid. Cultivation of bovine lipid chunks on Aloe vera scaffolds. Preventive, ameliorative, and therapeutic effects of steamed mature silkworms on metabolic disorders caused by loss of apolipoprotein E. Ultrasonicated Atlantic herring side streams as source of multifunctional bioactive and bioavailable peptides. Amylase/trypsin-inhibitor content and inhibitory activity of German common wheat landraces and modern varieties do not differ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1