Male proband with intractable seizures and a de novo start codon disrupting variant in GLUL.

IF 3.3 Q2 GENETICS & HEREDITY HGG Advances Pub Date : 2025-02-20 DOI:10.1016/j.xhgg.2025.100419
Elizabeth Carbonell, Sarah L Stenton, Vijay S Ganesh, Jialan Ma, Grace E VanNoy, Lynn Pais, John N Gaitanis, Melanie C O'Leary, Heidi L Rehm, Anne O'Donnell-Luria
{"title":"Male proband with intractable seizures and a de novo start codon disrupting variant in GLUL.","authors":"Elizabeth Carbonell, Sarah L Stenton, Vijay S Ganesh, Jialan Ma, Grace E VanNoy, Lynn Pais, John N Gaitanis, Melanie C O'Leary, Heidi L Rehm, Anne O'Donnell-Luria","doi":"10.1016/j.xhgg.2025.100419","DOIUrl":null,"url":null,"abstract":"<p><p>Biallelic variants in GLUL, encoding glutamine synthetase and responsible for the conversion of glutamate to glutamine, are associated with a severe recessive disease due to glutamine deficiency. A dominant disease mechanism was recently reported in nine females all with a de novo single nucleotide variant within the start codon or the 5'UTR region of GLUL that truncate 17 amino acids of the protein product, including its critical N-terminal degron sequence, resulting in a disorder of abnormal glutamine synthetase stability and manifesting as a phenotype of severe developmental and epileptic encephalopathy. Here, we report the first male with a pathogenic de novo variant in the same critical region of GLUL, with a phenotype of refractory focal and generalized seizures, as well as developmental delays. We provide a detailed description of the disease course and treatment response.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100419"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Biallelic variants in GLUL, encoding glutamine synthetase and responsible for the conversion of glutamate to glutamine, are associated with a severe recessive disease due to glutamine deficiency. A dominant disease mechanism was recently reported in nine females all with a de novo single nucleotide variant within the start codon or the 5'UTR region of GLUL that truncate 17 amino acids of the protein product, including its critical N-terminal degron sequence, resulting in a disorder of abnormal glutamine synthetase stability and manifesting as a phenotype of severe developmental and epileptic encephalopathy. Here, we report the first male with a pathogenic de novo variant in the same critical region of GLUL, with a phenotype of refractory focal and generalized seizures, as well as developmental delays. We provide a detailed description of the disease course and treatment response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
期刊最新文献
Male proband with intractable seizures and a de novo start codon disrupting variant in GLUL. Polyamine Metabolism is Dysregulated in COXFA4 Related Mitochondrial Disease. A proposed role for CDO1 in central nervous system development: Three children with rare missense variants and a neurological phenotype. Cardiovascular Disease-Associated Non-Coding Variants Disrupt GATA4-DNA Binding and Regulatory Functions. Families' experiences of receiving adult- and pediatric-onset genetic results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1