A van der Waals ferroelectric switchable diode with ultra-high nonlinearity factor

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-02-23 DOI:10.1016/j.apsusc.2025.162792
Ruibin Duan, Jiahao Yan, Dehuan Meng, Yuehui Wang, Dengqin Xu, Minghe Zhang, Dunshan Yu, Kechao Tang, Junchen Dong, Dedong Han, Xing Zhang
{"title":"A van der Waals ferroelectric switchable diode with ultra-high nonlinearity factor","authors":"Ruibin Duan, Jiahao Yan, Dehuan Meng, Yuehui Wang, Dengqin Xu, Minghe Zhang, Dunshan Yu, Kechao Tang, Junchen Dong, Dedong Han, Xing Zhang","doi":"10.1016/j.apsusc.2025.162792","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) van der Waals ferroelectric materials have emerged as promising candidates for miniaturized devices due to their atomically thin structures and unique ability to maintain ferroelectricity even at reduced dimensions. Recent research indicates that the interfacial barriers between semiconductors and ferroelectrics can be modulated by polarization charges, with ferroelectric polarization—reversible by an external electric field—playing a crucial role in the switchable diode effect. In this work, we investigate a room-temperature switchable ferroelectric diode (Fe-diode) based on a MoS<sub>2</sub>/α-In<sub>2</sub>Se<sub>3</sub> heterojunction. The out-of-plane ferroelectric properties of the α-In<sub>2</sub>Se<sub>3</sub> layer enable efficient modulation of the Schottky barriers at the MoS<sub>2</sub>/α-In<sub>2</sub>Se<sub>3</sub> interface through external voltage application, thereby achieving a notable switchable diode effect with a nonlinearity of up to 934. By exploiting the inherent nonlinearity, the ferroelectric diode can effectively generate complex signal waveforms, making it highly suitable for secure communication systems. These findings make the ferroelectric diode a potential candidate for enhancing confidentiality in future communication technologies, protecting data against eavesdropping and unauthorized access.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"18 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162792","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) van der Waals ferroelectric materials have emerged as promising candidates for miniaturized devices due to their atomically thin structures and unique ability to maintain ferroelectricity even at reduced dimensions. Recent research indicates that the interfacial barriers between semiconductors and ferroelectrics can be modulated by polarization charges, with ferroelectric polarization—reversible by an external electric field—playing a crucial role in the switchable diode effect. In this work, we investigate a room-temperature switchable ferroelectric diode (Fe-diode) based on a MoS2/α-In2Se3 heterojunction. The out-of-plane ferroelectric properties of the α-In2Se3 layer enable efficient modulation of the Schottky barriers at the MoS2/α-In2Se3 interface through external voltage application, thereby achieving a notable switchable diode effect with a nonlinearity of up to 934. By exploiting the inherent nonlinearity, the ferroelectric diode can effectively generate complex signal waveforms, making it highly suitable for secure communication systems. These findings make the ferroelectric diode a potential candidate for enhancing confidentiality in future communication technologies, protecting data against eavesdropping and unauthorized access.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Surface structure-dependent nucleation and rotated sintering of an initially oxidized AuCu nanoalloy Interfacial interaction energy and pore blockage analysis of protein fouling in ultrafiltration-like forward osmosis Optimizing interface microstructure of diamond reinforced Al matrix composites via nano-scale Si-Al coatings towards enhanced thermophysical performance A van der Waals ferroelectric switchable diode with ultra-high nonlinearity factor C/N/Br co-doped Li4Ti5O12/Ti3C2Tx/TiO2 nanosheet heterojunction lithium-ion battery cathode material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1