{"title":"Single-Atom Enables Reverse Hydrogen Spillover for High-Performance Protonic Ceramic Fuel Cells","authors":"Sunce Zhao, Wenjia Ma, Beibei He, Yihan Ling, Yonglong Huang, Feng Hu, Zhu Shu, Ling Zhao","doi":"10.1002/adma.202501387","DOIUrl":null,"url":null,"abstract":"Protonic ceramic fuel cells (PCFCs) offer a promising avenue for sustainable energy conversion, however, their commercial potential is hindered by sluggish proton-involved oxygen reduction reaction (P-ORR) kinetics and inadequate durability of cathode materials. Here, a novel single-atom Ru anchor on BaCe<sub>0.125</sub>Fe<sub>0.875</sub>O<sub>3−δ</sub> (BCF) perovskite, synthesized by a facile and scalable solid-state approach, as a potential cathode for PCFCs is reported. Theoretical and experimental analyses demonstrate that the single-atom Ru on BCF, characterized by a unique 4-coordinate Ru-O-Fe configuration, not only induces reverse hydrogen spillover but also acts as an active site for P-ORR. The application of the optimized 2Ru-BCF (2 wt.% Ru) cathode in a single cell delivers an exceptional peak power density of 1.78 W cm<sup>−2</sup> at 700 °C, along with excellent operational stability over 200 h. These findings provide new insights into single-atom engineering, advancing the commercial viability of PCFCs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"82 1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501387","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protonic ceramic fuel cells (PCFCs) offer a promising avenue for sustainable energy conversion, however, their commercial potential is hindered by sluggish proton-involved oxygen reduction reaction (P-ORR) kinetics and inadequate durability of cathode materials. Here, a novel single-atom Ru anchor on BaCe0.125Fe0.875O3−δ (BCF) perovskite, synthesized by a facile and scalable solid-state approach, as a potential cathode for PCFCs is reported. Theoretical and experimental analyses demonstrate that the single-atom Ru on BCF, characterized by a unique 4-coordinate Ru-O-Fe configuration, not only induces reverse hydrogen spillover but also acts as an active site for P-ORR. The application of the optimized 2Ru-BCF (2 wt.% Ru) cathode in a single cell delivers an exceptional peak power density of 1.78 W cm−2 at 700 °C, along with excellent operational stability over 200 h. These findings provide new insights into single-atom engineering, advancing the commercial viability of PCFCs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.