A bio-inspired approach to line segment detection utilizing orientation-selective neurons

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2025-02-21 DOI:10.1016/j.sigpro.2025.109950
Daipeng Yang , Bo Peng , Xi Wu
{"title":"A bio-inspired approach to line segment detection utilizing orientation-selective neurons","authors":"Daipeng Yang ,&nbsp;Bo Peng ,&nbsp;Xi Wu","doi":"10.1016/j.sigpro.2025.109950","DOIUrl":null,"url":null,"abstract":"<div><div>Line segment detection is essential for tasks like SLAM, camera pose estimation, and 3D reconstruction. Although many excellent line segment detection methods have been proposed, detecting more true positives while rejecting false positives remains challenging. The human visual system can effectively perceive line segments in complex environments through a processing pathway involving multiple visual cortices. Inspired by this, we propose a novel bio-inspired line segment detection method that mimics the perception of line segments in the visual cortex. Our method models orientation-selective neurons in the primary and secondary visual cortices. Based on the preferred orientations of these neurons, we integrate them to mimic the function of orientation and curvature domains in the fourth visual cortex, generating continuous and smooth edge segments. A post-processing step, including least squares line fitting and gap merging, is employed to obtain line segments. We evaluated our method against other state-of-the-art methods on YorkUrban-LineSegment and Wireframe. Results show that our method achieves a higher F-score, improving by 2.9% and 2.1%, respectively, while ensuring both precision and recall. Additionally, in 3D reconstruction, our method produces more complete and accurate scenes with fewer fragments and omissions compared to other methods. Our code is available at <span><span>https://github.com/DaipengYang7/BILSD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"233 ","pages":"Article 109950"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000647","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Line segment detection is essential for tasks like SLAM, camera pose estimation, and 3D reconstruction. Although many excellent line segment detection methods have been proposed, detecting more true positives while rejecting false positives remains challenging. The human visual system can effectively perceive line segments in complex environments through a processing pathway involving multiple visual cortices. Inspired by this, we propose a novel bio-inspired line segment detection method that mimics the perception of line segments in the visual cortex. Our method models orientation-selective neurons in the primary and secondary visual cortices. Based on the preferred orientations of these neurons, we integrate them to mimic the function of orientation and curvature domains in the fourth visual cortex, generating continuous and smooth edge segments. A post-processing step, including least squares line fitting and gap merging, is employed to obtain line segments. We evaluated our method against other state-of-the-art methods on YorkUrban-LineSegment and Wireframe. Results show that our method achieves a higher F-score, improving by 2.9% and 2.1%, respectively, while ensuring both precision and recall. Additionally, in 3D reconstruction, our method produces more complete and accurate scenes with fewer fragments and omissions compared to other methods. Our code is available at https://github.com/DaipengYang7/BILSD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Editorial Board Multi-focus image fusion based on visual depth and fractional-order differentiation operators embedding convolution norm Two-stage reversible data hiding in encrypted domain with public key embedding mechanism Analog filters based on the Mittag-Leffler functions Two non-convex optimization approaches for joint transmit waveform and receive filter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1