{"title":"Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone","authors":"Yi-Xian Qin","doi":"10.1016/j.mbm.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound imaging has been widely used in clinical diagnoses, such as B-mode and M-mode ultrasound imaging for cardiovascular, abdomen, OB-Gyn, and other soft tissue and organs in clinical diagnoses. Ultrasound imaging has traditionally been limited in its application to bone because of the high acoustic impedance and density of trabecular and cortical bone structure and density alterations, high wave reflection, absorption, scattering, and low penetration, which result in significant reflection and attenuation of ultrasonic energy in such mineral tissues. Recent advancements in quantitative ultrasound technology have opened new possibilities for noninvasive characteristics of bone quality through transmitted or backscattered signals, offering a radiation-free alternative to traditional imaging modalities like dual-energy X-ray absorptiometry (DEX), X-rays, and CT scans. In addition, low-intensity ultrasound (LIUS) has been studied and applied to promote bone regeneration and fracture healing through induced mechanotransduction in tissue and cells. The field of bone ultrasound encompasses fundamental research on the interaction of elastic waves with cortical and trabecular bone microstructures, the development of innovative imaging methodologies and medical applications such as bone health assessment for osteoporosis diagnosis, therapeutic use of LIUS, and phase aberration correction inside the skull. This work has highlighted recent developments and advancements in ultrasound diagnosis and therapeutics, induced cellular and molecular pathways, and future directions using ultrasound as a promising imaging tool and treatment method.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702500004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound imaging has been widely used in clinical diagnoses, such as B-mode and M-mode ultrasound imaging for cardiovascular, abdomen, OB-Gyn, and other soft tissue and organs in clinical diagnoses. Ultrasound imaging has traditionally been limited in its application to bone because of the high acoustic impedance and density of trabecular and cortical bone structure and density alterations, high wave reflection, absorption, scattering, and low penetration, which result in significant reflection and attenuation of ultrasonic energy in such mineral tissues. Recent advancements in quantitative ultrasound technology have opened new possibilities for noninvasive characteristics of bone quality through transmitted or backscattered signals, offering a radiation-free alternative to traditional imaging modalities like dual-energy X-ray absorptiometry (DEX), X-rays, and CT scans. In addition, low-intensity ultrasound (LIUS) has been studied and applied to promote bone regeneration and fracture healing through induced mechanotransduction in tissue and cells. The field of bone ultrasound encompasses fundamental research on the interaction of elastic waves with cortical and trabecular bone microstructures, the development of innovative imaging methodologies and medical applications such as bone health assessment for osteoporosis diagnosis, therapeutic use of LIUS, and phase aberration correction inside the skull. This work has highlighted recent developments and advancements in ultrasound diagnosis and therapeutics, induced cellular and molecular pathways, and future directions using ultrasound as a promising imaging tool and treatment method.