Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone

Yi-Xian Qin
{"title":"Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone","authors":"Yi-Xian Qin","doi":"10.1016/j.mbm.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound imaging has been widely used in clinical diagnoses, such as B-mode and M-mode ultrasound imaging for cardiovascular, abdomen, OB-Gyn, and other soft tissue and organs in clinical diagnoses. Ultrasound imaging has traditionally been limited in its application to bone because of the high acoustic impedance and density of trabecular and cortical bone structure and density alterations, high wave reflection, absorption, scattering, and low penetration, which result in significant reflection and attenuation of ultrasonic energy in such mineral tissues. Recent advancements in quantitative ultrasound technology have opened new possibilities for noninvasive characteristics of bone quality through transmitted or backscattered signals, offering a radiation-free alternative to traditional imaging modalities like dual-energy X-ray absorptiometry (DEX), X-rays, and CT scans. In addition, low-intensity ultrasound (LIUS) has been studied and applied to promote bone regeneration and fracture healing through induced mechanotransduction in tissue and cells. The field of bone ultrasound encompasses fundamental research on the interaction of elastic waves with cortical and trabecular bone microstructures, the development of innovative imaging methodologies and medical applications such as bone health assessment for osteoporosis diagnosis, therapeutic use of LIUS, and phase aberration correction inside the skull. This work has highlighted recent developments and advancements in ultrasound diagnosis and therapeutics, induced cellular and molecular pathways, and future directions using ultrasound as a promising imaging tool and treatment method.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702500004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound imaging has been widely used in clinical diagnoses, such as B-mode and M-mode ultrasound imaging for cardiovascular, abdomen, OB-Gyn, and other soft tissue and organs in clinical diagnoses. Ultrasound imaging has traditionally been limited in its application to bone because of the high acoustic impedance and density of trabecular and cortical bone structure and density alterations, high wave reflection, absorption, scattering, and low penetration, which result in significant reflection and attenuation of ultrasonic energy in such mineral tissues. Recent advancements in quantitative ultrasound technology have opened new possibilities for noninvasive characteristics of bone quality through transmitted or backscattered signals, offering a radiation-free alternative to traditional imaging modalities like dual-energy X-ray absorptiometry (DEX), X-rays, and CT scans. In addition, low-intensity ultrasound (LIUS) has been studied and applied to promote bone regeneration and fracture healing through induced mechanotransduction in tissue and cells. The field of bone ultrasound encompasses fundamental research on the interaction of elastic waves with cortical and trabecular bone microstructures, the development of innovative imaging methodologies and medical applications such as bone health assessment for osteoporosis diagnosis, therapeutic use of LIUS, and phase aberration correction inside the skull. This work has highlighted recent developments and advancements in ultrasound diagnosis and therapeutics, induced cellular and molecular pathways, and future directions using ultrasound as a promising imaging tool and treatment method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tropomodulin1 regulates the biomechanical changes in macrophages induced by matrix stiffness Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone Toward a clear relationship between mechanical signals and bone adaptation Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis The underlying difference of metastatic and non-metastatic breast cancer cells in configuring type I collagen fibres to promote migration by cell mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1