Tropomodulin1 regulates the biomechanical changes in macrophages induced by matrix stiffness

Yajun Meng , Amannisa Tuersuntuoheti , Siyu Jiang , Jiayi Xie , Zejun Yue , Dingwen Xu , Xueyu Geng , Xiang Lian , Lide Xie , Lanping Amy Sung , Xifu Wang , Jing Zhou , Weijuan Yao
{"title":"Tropomodulin1 regulates the biomechanical changes in macrophages induced by matrix stiffness","authors":"Yajun Meng ,&nbsp;Amannisa Tuersuntuoheti ,&nbsp;Siyu Jiang ,&nbsp;Jiayi Xie ,&nbsp;Zejun Yue ,&nbsp;Dingwen Xu ,&nbsp;Xueyu Geng ,&nbsp;Xiang Lian ,&nbsp;Lide Xie ,&nbsp;Lanping Amy Sung ,&nbsp;Xifu Wang ,&nbsp;Jing Zhou ,&nbsp;Weijuan Yao","doi":"10.1016/j.mbm.2025.100117","DOIUrl":null,"url":null,"abstract":"<div><div>The monocyte/macrophage infiltration plays critical roles in the development of atherosclerosis. Arterial stiffness is a cholesterol-independent risk factor for cardiovascular events. The regulation of arterial stiffness on biomechanics of macrophages and its underlying mechanism remains unclear. We prepared polyacrylamide gels with low and high stiffness that corresponded to healthy and diseased blood vessels, respectively. We found that macrophages cultured on stiff matrix had increased rigidity and migration ability compared to those on soft matrix. An actin capping protein, tropomodulin1 (Tmod1) was upregulated in macrophages by stiff matrix and in arteries with high stiffness. Further analyses showed that deficiency of Tmod1 in macrophages completely or partially prevented the changes in actin polymerization, cell adhesion and cell spreading induced by stiff matrix. Overexpression of Tmod1 in macrophages enhanced actin polymerization, cell adhesion and spreading on stiff matrix. Tmod1 was involved in the regulation of vinculin expression and formation of focal adhesion in macrophages on stiff matrix. Finally, the deficiency of Tmod1 in macrophages retarded the formation of atherosclerotic plaques in blood vessels with high matrix stiffness. The results suggest that Tmod1 was a key regulator in macrophage rigidity and migration on stiff substrate. The present work will help us to understand the biomechanical mechanisms for the development of atherosclerosis.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100117"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The monocyte/macrophage infiltration plays critical roles in the development of atherosclerosis. Arterial stiffness is a cholesterol-independent risk factor for cardiovascular events. The regulation of arterial stiffness on biomechanics of macrophages and its underlying mechanism remains unclear. We prepared polyacrylamide gels with low and high stiffness that corresponded to healthy and diseased blood vessels, respectively. We found that macrophages cultured on stiff matrix had increased rigidity and migration ability compared to those on soft matrix. An actin capping protein, tropomodulin1 (Tmod1) was upregulated in macrophages by stiff matrix and in arteries with high stiffness. Further analyses showed that deficiency of Tmod1 in macrophages completely or partially prevented the changes in actin polymerization, cell adhesion and cell spreading induced by stiff matrix. Overexpression of Tmod1 in macrophages enhanced actin polymerization, cell adhesion and spreading on stiff matrix. Tmod1 was involved in the regulation of vinculin expression and formation of focal adhesion in macrophages on stiff matrix. Finally, the deficiency of Tmod1 in macrophages retarded the formation of atherosclerotic plaques in blood vessels with high matrix stiffness. The results suggest that Tmod1 was a key regulator in macrophage rigidity and migration on stiff substrate. The present work will help us to understand the biomechanical mechanisms for the development of atherosclerosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tropomodulin1 regulates the biomechanical changes in macrophages induced by matrix stiffness Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone Toward a clear relationship between mechanical signals and bone adaptation Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis The underlying difference of metastatic and non-metastatic breast cancer cells in configuring type I collagen fibres to promote migration by cell mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1