Prediction of risk for isolated incomplete lateral meniscal injury using a dynamic nomogram based on MRI-derived anatomic radiomics and physical activity: a proof-of-concept study in 3PM-guided management.

IF 6 Q1 MEDICINE, RESEARCH & EXPERIMENTAL The EPMA journal Pub Date : 2025-01-27 eCollection Date: 2025-03-01 DOI:10.1007/s13167-025-00399-3
Chao Xie, Jingle Chen, Hantao Chen, Zhijie Zuo, Yucong Li, Lijun Lin
{"title":"Prediction of risk for isolated incomplete lateral meniscal injury using a dynamic nomogram based on MRI-derived anatomic radiomics and physical activity: a proof-of-concept study in 3PM-guided management.","authors":"Chao Xie, Jingle Chen, Hantao Chen, Zhijie Zuo, Yucong Li, Lijun Lin","doi":"10.1007/s13167-025-00399-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 3PM framework revolutionizes disease management by facilitating early risk prediction, disease prevention, and personalized treatment. For isolated incomplete lateral meniscal injuries (IILMI), where early diagnosis is challenging due to non-specific symptoms, 3PM's proactive approach is beneficial in preventing knee joint disease progression and maintaining patients' quality of life.</p><p><strong>Aims: </strong>This study aimed to develop a predictive model within the 3PM framework, integrating knee MRI anatomical features with individual physical activity (PA) patterns to enhance early IILMI detection and treatment efficacy, improving patient outcomes and quality of life.</p><p><strong>Methods: </strong>The training dataset comprised 254 patients. Using logistic regression analyses and least absolute shrinkage and selection operator (LASSO), IILMI was identified among various preoperative factors containing knee MRI and PA features. A dynamic nomogram was constructed and subjected to internal and external validations (91 patients). Validation encompassed C-index, receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves. ROC analysis determined the risk stratification cut-off.</p><p><strong>Results: </strong>Six independent IILMI factors were identified, including PA intensity, PA type, degree of PA intensity, and MRI-derived anatomical parameters. The dynamic nomogram showed high predictive accuracy (C-index, 0.829 in training, 0.906 in validation). IILMI patients were divided into low-risk, medium-risk, and high-risk groups according to the cut-off value.</p><p><strong>Conclusion: </strong>In 3PM-guided management, the dynamic nomogram enables early IILMI diagnosis in patients while promoting IILMI stratification making personalized treatment feasible. With further development, it holds promise for effectively predicting IILMI risk, preventing severe knee pathologies, and enhancing the quality of life for at-risk patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13167-025-00399-3.</p>","PeriodicalId":94358,"journal":{"name":"The EPMA journal","volume":"16 1","pages":"199-215"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EPMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13167-025-00399-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The 3PM framework revolutionizes disease management by facilitating early risk prediction, disease prevention, and personalized treatment. For isolated incomplete lateral meniscal injuries (IILMI), where early diagnosis is challenging due to non-specific symptoms, 3PM's proactive approach is beneficial in preventing knee joint disease progression and maintaining patients' quality of life.

Aims: This study aimed to develop a predictive model within the 3PM framework, integrating knee MRI anatomical features with individual physical activity (PA) patterns to enhance early IILMI detection and treatment efficacy, improving patient outcomes and quality of life.

Methods: The training dataset comprised 254 patients. Using logistic regression analyses and least absolute shrinkage and selection operator (LASSO), IILMI was identified among various preoperative factors containing knee MRI and PA features. A dynamic nomogram was constructed and subjected to internal and external validations (91 patients). Validation encompassed C-index, receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves. ROC analysis determined the risk stratification cut-off.

Results: Six independent IILMI factors were identified, including PA intensity, PA type, degree of PA intensity, and MRI-derived anatomical parameters. The dynamic nomogram showed high predictive accuracy (C-index, 0.829 in training, 0.906 in validation). IILMI patients were divided into low-risk, medium-risk, and high-risk groups according to the cut-off value.

Conclusion: In 3PM-guided management, the dynamic nomogram enables early IILMI diagnosis in patients while promoting IILMI stratification making personalized treatment feasible. With further development, it holds promise for effectively predicting IILMI risk, preventing severe knee pathologies, and enhancing the quality of life for at-risk patients.

Supplementary information: The online version contains supplementary material available at 10.1007/s13167-025-00399-3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.50
自引率
0.00%
发文量
0
期刊最新文献
Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria. Association of prebiotic/probiotic intake with MASLD: evidence from NHANES and randomized controlled trials in the context of prediction, prevention, and a personalized medicine framework. Prediction of risk for isolated incomplete lateral meniscal injury using a dynamic nomogram based on MRI-derived anatomic radiomics and physical activity: a proof-of-concept study in 3PM-guided management. Physical activity, cardiovascular disease, and mortality across obesity levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1