Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria.

IF 6 Q1 MEDICINE, RESEARCH & EXPERIMENTAL The EPMA journal Pub Date : 2025-01-31 eCollection Date: 2025-03-01 DOI:10.1007/s13167-025-00396-6
Michael Bolliger, Daniel Wasinger, Julia Brunmair, Gerhard Hagn, Michael Wolf, Karin Preindl, Birgit Reiter, Andrea Bileck, Christopher Gerner, Florian Fitzal, Samuel M Meier-Menches
{"title":"Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria.","authors":"Michael Bolliger, Daniel Wasinger, Julia Brunmair, Gerhard Hagn, Michael Wolf, Karin Preindl, Birgit Reiter, Andrea Bileck, Christopher Gerner, Florian Fitzal, Samuel M Meier-Menches","doi":"10.1007/s13167-025-00396-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Metabolomics measurements of eccrine sweat may provide novel and relevant biomedical information to support predictive, preventive and personalised medicine (3PM). However, only limited data is available regarding metabolic alterations accompanying chemotherapy of breast cancer patients related to residual cancer burden (RCB) or therapy response. Here, we have applied Metabo-Tip, a non-invasive metabolomics assay based on the analysis of eccrine sweat from the fingertips, to investigate the feasibility of such an approach, especially with respect to drug monitoring, assessing lifestyle parameters and stratification of breast cancer patients.</p><p><strong>Methods: </strong>Eccrine sweat samples were collected from breast cancer patients (<i>n</i> = 9) during the first cycle of neoadjuvant chemotherapy at four time points in this proof-of-concept study at a Tertiary University Hospital. Metabolites in eccrine sweat were analysed using mass spectrometry. Blood plasma samples from the same timepoints were also collected and analysed using a validated targeted metabolomics kit, in addition to proteomics and fatty acids/oxylipin analysis.</p><p><strong>Results: </strong>A total of 247 exogenous small molecules and endogenous metabolites were identified in eccrine sweat of the breast cancer patients. Cyclophosphamide and ondansetron were successfully detected and monitored in eccrine sweat of individual patients and accurately reflected the administration schedule. The non-essential amino acids asparagine, serine and proline, as well as ornithine were significantly regulated in eccrine sweat and blood plasma over the therapy cycle. However, their distinct time-dependent profiles indicated compartment-specific distributions. Indeed, the metabolite composition of eccrine sweat seems to largely resemble the composition of the interstitial fluid. Plasma proteins and fatty acids/oxylipins were not affected by the first treatment cycle. Individual smoking habit was revealed by the simultaneous detection of nicotine and its primary metabolite cotinine in eccrine sweat. Stratification according to RCB revealed pronounced differences in the metabolic composition of eccrine sweat in these patients at baseline, e.g., essential amino acids, possibly due to the systemic contribution of breast cancer and its impact on metabolic turnover.</p><p><strong>Conclusion: </strong>Mass spectrometry-based analysis of metabolites from eccrine sweat of breast cancer patients successfully qualified lifestyle parameters for risk assessment and allowed us to monitor drug treatment and systemic response to therapy. Moreover, eccrine sweat revealed a potentially predictive metabolic pattern stratifying patients by the extent of the metabolic activity of breast cancer tissue at baseline. Eccrine sweat is derived from the otherwise hardly accessible interstitial fluid and, thus, opens up a new dimension for biomonitoring of breast cancer in secondary and tertiary care. The simple sample collection without the need for trained personnel could also enable decentralised long-term biomonitoring to assess stable disease or disease progression. Eccrine sweat analysis may indeed significantly advance 3PM for the benefit of breast cancer patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13167-025-00396-6.</p>","PeriodicalId":94358,"journal":{"name":"The EPMA journal","volume":"16 1","pages":"165-182"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EPMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13167-025-00396-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Metabolomics measurements of eccrine sweat may provide novel and relevant biomedical information to support predictive, preventive and personalised medicine (3PM). However, only limited data is available regarding metabolic alterations accompanying chemotherapy of breast cancer patients related to residual cancer burden (RCB) or therapy response. Here, we have applied Metabo-Tip, a non-invasive metabolomics assay based on the analysis of eccrine sweat from the fingertips, to investigate the feasibility of such an approach, especially with respect to drug monitoring, assessing lifestyle parameters and stratification of breast cancer patients.

Methods: Eccrine sweat samples were collected from breast cancer patients (n = 9) during the first cycle of neoadjuvant chemotherapy at four time points in this proof-of-concept study at a Tertiary University Hospital. Metabolites in eccrine sweat were analysed using mass spectrometry. Blood plasma samples from the same timepoints were also collected and analysed using a validated targeted metabolomics kit, in addition to proteomics and fatty acids/oxylipin analysis.

Results: A total of 247 exogenous small molecules and endogenous metabolites were identified in eccrine sweat of the breast cancer patients. Cyclophosphamide and ondansetron were successfully detected and monitored in eccrine sweat of individual patients and accurately reflected the administration schedule. The non-essential amino acids asparagine, serine and proline, as well as ornithine were significantly regulated in eccrine sweat and blood plasma over the therapy cycle. However, their distinct time-dependent profiles indicated compartment-specific distributions. Indeed, the metabolite composition of eccrine sweat seems to largely resemble the composition of the interstitial fluid. Plasma proteins and fatty acids/oxylipins were not affected by the first treatment cycle. Individual smoking habit was revealed by the simultaneous detection of nicotine and its primary metabolite cotinine in eccrine sweat. Stratification according to RCB revealed pronounced differences in the metabolic composition of eccrine sweat in these patients at baseline, e.g., essential amino acids, possibly due to the systemic contribution of breast cancer and its impact on metabolic turnover.

Conclusion: Mass spectrometry-based analysis of metabolites from eccrine sweat of breast cancer patients successfully qualified lifestyle parameters for risk assessment and allowed us to monitor drug treatment and systemic response to therapy. Moreover, eccrine sweat revealed a potentially predictive metabolic pattern stratifying patients by the extent of the metabolic activity of breast cancer tissue at baseline. Eccrine sweat is derived from the otherwise hardly accessible interstitial fluid and, thus, opens up a new dimension for biomonitoring of breast cancer in secondary and tertiary care. The simple sample collection without the need for trained personnel could also enable decentralised long-term biomonitoring to assess stable disease or disease progression. Eccrine sweat analysis may indeed significantly advance 3PM for the benefit of breast cancer patients.

Supplementary information: The online version contains supplementary material available at 10.1007/s13167-025-00396-6.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于质谱法的泌汗分析为奥地利乳腺癌患者队列中的预测、预防和个性化医疗提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.50
自引率
0.00%
发文量
0
期刊最新文献
Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria. Association of prebiotic/probiotic intake with MASLD: evidence from NHANES and randomized controlled trials in the context of prediction, prevention, and a personalized medicine framework. Prediction of risk for isolated incomplete lateral meniscal injury using a dynamic nomogram based on MRI-derived anatomic radiomics and physical activity: a proof-of-concept study in 3PM-guided management. Physical activity, cardiovascular disease, and mortality across obesity levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1